4 — Colors & Spectra [Revision : 1.3]

• Colors

 - Reminder: bolometric magnitude measures total flux
 \[m = -2.5 \log_{10} F + C = -2.5 \log_{10} \int_0^\infty F_\lambda \, d\lambda + C \]

 - Also can use **photometric filter** to measure flux in specific passband:
 \[m_X = -2.5 \log_{10} F_X + C_X = -2.5 \log_{10} \int_0^\infty S_X(\lambda) F_\lambda \, d\lambda + C_X \]

 (\(X \) represents passband label or name)

 - \(S_X(\lambda) \) is **sensitivity function** — fraction of light transmitted at wavelength \(\lambda \). Depends on filter, telescope optical, detector & atmosphere

 - Bolometric magnitude corresponds to complete transmission: \(S_{\text{bol}}(\lambda) = 1 \)

 - Standardized collection of filters makes up **photometric system**

 - Most common system is **Johnson system**:

 * **U-band** (3650 Å ± 340 Å) — ultraviolet
 * **B-band** (4400 Å ± 490 Å) — blue
 * **V-band** (5500 Å ± 445 Å) — visual

 ...defined by 2 aluminum mirrors, 1p21 photomultiplier tube, filters & (for U-band) atmospheric transmission (see)

 - \(m_U, m_B, m_V \) (‘color magnitudes’ or ‘photometric indices’) often written as \(U, B, V \) (similarly with other systems)

 - \(C_U, C_B, C_V \) originally chosen so that Vega & similar stars have \((U, B, V)\) close to zero

 - Visual magnitude related to bolometric magnitude by **bolometric correction**:
 \[BC = m - V = M - M_V \]

 (sometimes \(m \) written as \(m_{\text{bol}}, M \) as \(M_{\text{bol}} \)).

 - \(BC \) depends primarily on effective temperature \(T_{\text{eff}} \) of star (look it up in table)

 - **Photometric colors** are differences between magnitudes in passbands; e.g.,
 \[U - B = -2.5 \log_{10} F_U - C_U + 2.5 \log_{10} F_V + C_V = -2.5 \log_{10} \frac{F_U}{F_B} + C_{UV} \]

 - Colors give approximate information about shape of star’s spectrum; location on BB curve \(\longrightarrow \) temperature

 - More negative colors \(\longrightarrow \) bluer spectrum

 - Important: photometric indices affected by absorption in interstellar medium (**extinction**)

 - Extinction more pronounced in bluer passbands \(\longrightarrow \) **interstellar reddening**

• Spectrum

 - Use a **spectrograph** to measure \(F_\lambda \)

 * Diffraction grating sends light into different directions depending on wavelength \(\lambda \)

 * Split light is recorded on photographic plate / photomultipliers / CCD
- Spectrograph characterized by **resolving power** $\lambda/\Delta \lambda$ ($\Delta \lambda$ is smallest difference in wavelength measurable)
 - General features of optical stellar spectra (see Fig. 9.5 of O&C):
 * Smoothly-varying **continuum**
 * Sharp **absorption lines**
 * Abrupt **absorption edges** (mainly, hot stars)
 - Understand features in terms of **Kirchhoff’s laws**:
 * Hot, dense gas produces featureless continuum (similar to BB)
 * Hot, diffuse gas produces bright emission lines
 * Cool(er) diffuse gas in front of continuum source produces dark absorption lines
 - General picture of stellar surface: **atmosphere** with hot, dense gas lower down, overlaid by cooler, low-density gas
 - Each spectral line formed by specific element in specific state of excitation, ionization (e.g., ‘Hα’ line at 6563 Å due to absorption by neutral hydrogen in $n = 2$ excited state)
 - Use measurements of line strengths & shapes to determine atmosphere structure
 - Also, use measurements of line wavelengths to determine **radial velocity** of star

$$\frac{\lambda_{\text{obs}} - \lambda_{\text{rest}}}{\lambda_{\text{rest}}} = \frac{\Delta \lambda}{\lambda_{\text{rest}}} = \frac{v_r}{c}$$

(Doppler effect, assuming $v_r \ll c$). Especially useful for binary stars (next lecture)