The MESA Stellar Evolution Code

Rich Townsend

University of Wisconsin-Madison

Topics in Computing for Astronomy — Oct 30 2012
Modules for Experiments in Stellar Astrophysics
Why a New Stellar Evolution Code?

- **Openness**: anyone can download sources from the website.

- **Modularity**: independent modules for physics and for numerical algorithms; the parts can be used stand-alone.

- **Comprehensive Microphysics**: up-to-date, wide-ranging, flexible, and independently useable microphysics modules.

- **Modern Techniques**: advanced AMR, fully coupled solution for composition and abundances, mass loss and gain, etc.

- **Performance**: runs well on a personal computer and makes effective use of parallelism with multi-core architectures.

- **Wide Applicability**: capable of calculating the evolution of stars in a wide range of environments.
The MESA Council

• Members:
 • Lars Bildsten (UCSB/KITP)
 • Bill Paxton (UCSB/KITP)
 • Frank Timmes (Arizona State)
 • Falk Herwig (University of British Columbia)
 • Ed Brown (Michigan State)
 • Aaron Dotter (STScI; now Oz)
 • Matteo Cantiello (UCSB/KITP)
 • Rich Townsend (University of Wisconsin-Madison)

• Duties
 • Code development
 • Instrument paper(s)
 • Infrastructure maintenance (website, forum, SDK)
 • Summer schools
Online MESA Resources

- Website (main resource):

 http://mesa.sourceforge.net/index.html

- Mailing list (bug reports, results):

 https://lists.sourceforge.net/lists/listinfo/MESA-users

- Forum (bug reports, results, lectures, FAQs):

 http://mesastar.org/

- SDK (software tools):

- Instrument paper:

MESA in Action: Low-Mass Stellar Evolution

- Code goes through He core flash without problems
- No need for ad-hoc ‘transition’ between RGB and HB (i.e., no EZ-Web fudge)
- Thermal pulses on AGB also handled
- Mass-loss allows evolution through to WD remnant

From MESA Instrument Paper
MESA in Action: Intermediate-Mass Stars

From MESA Instrument Paper
MESA in Action: Massive Stars to Core Collapse

From MESA Instrument Paper
From MESA Instrument Paper

\[T_c \propto \rho_c^{1/3} \]

\[\frac{\epsilon_F}{kT} = 4 \]

\[T_c = 1000, 3000, 5000 \text{ K} \]

\[\log \rho_c (\text{g cm}^{-3}) \]

\[\log Y = 0.275 \]

\[Z = 0.019 \]
MESA in Action: Evolution of a Solar-Mass Star

Credit: Josiah Schwab

Tuesday, October 30, 12
Installing MESA

• Obtain a current copy of the MESA tree:

```
svn co -r 4631 http://mesa.svn.sourceforge.net/svnroot/mesa/trunk mesa-4631
```

• Set environment variables:

```
export OMP_NUM_THREADS=8
export MESA_DIR=<blah>/mesa-4298
```

• Build MESA:

```
cd $MESA_DIR
./install
```

• Caveats:
 • Revision number is always changing; see http://mesa.sourceforge.net/getting_started.html
 • Takes up 4GB of disk space or more
 • Change OMP_NUM_THREADS to number of processor cores on your machine
 • Change syntax of environment-variable setting if you are using csh
The MESA Software Development Kit (SDK)

- What’s it for?
 - Hassle-free compilation of MESA
 - Works on Linux and Mac OS X (Intel-based)

- What’s in it?
 - gcc/gfortran 4.7 compilers (good support for Fortran 2003)
 - BLAS/LAPACK libraries (linear algebra)
 - PGPLOT library (graphics)
 - HDF5 library (file storage)

- Where do I get it from?

- How do I install?
 - Linux: unpack tar archive (anywhere; don’t need to be root user)
 - OS X: drag package into Applications folder
Running an Example: Solar-Mass Evolution

• Change into the example directory:

 cd $MESA_ROOT/star/test_suite/1M_pre_ms_to_wd/

• Build the code:

 ./mk

• Run the code:

 ./rn

• Output produced in LOGS subdirectory:

 • history.data — global properties of all models in run
 • profileN.data (N=1,2,...) — internal structure of selected models
 • profiles.index — mapping between model number and N
Modifying the Example: Enabling Plotting

- Edit the `inlist_1.0` file:

  ```
  !pgstar_flag = .true.
  ```

- Run the code:

  ```
  ./rn
  ```
Understanding inlist Files

- inlist format is defined by Fortran standard

- Overall file structure:

```
&star_job
   ...
/ ! end of star_job namelist

&controls
   ...
/ ! end of controls namelist

&pgstar
   ...
/ ! end of pgstar namelist
```

- Overall run parameters
- Detailed control parameters
- Plot parameters
&star_job

 mesa_dir = '.../.../..

 read_extra_star_job_inlist1 = .true.
 extra_star_job_inlist1_name = 'inlist_sub'

 / ! end of star_job namelist

&controls

 initial_mass = 1.0
 initial_z = 0.02d0

 / ! end of controls namelist

...
• Grab the `read_mesa.pro` IDL procedure:

 http://mesastar.org/tools-utilities/idl

• Read data into IDL structures:

  ```idl
  IDL> s = read_mesa('profile1.data')
  IDL> help, s, /str
  IDL> plot, s.logrho, s.logT
  ```

  ```idl
  IDL> s = read_mesa('history.data')
  IDL> help, s, /str
  IDL> plot, s.log_Teff, s.log_L, xrange=[4.5,3.5], yrange=[0,4]
  ```
Other test_suite Examples

- sample_zams — build multiple ZAMS models
- 7M_prems_to_AGB — 7 M☉, pre-main sequence to AGB
- example_astero — asteroseismology using adipls code (supplied)
- binary_rlo — Roche-lobe overflow in binary system
- 1.5M_with_diffusion — 1.5 M☉, elemental diffusion
- massive_rotating — 15 M☉, initial rotation at 50% critical
- ns_c — 1 M☉ neutron star, accreting/burning carbon
Rolling Your Own

• Copy one of the test_suite directories:

```bash
cp -a $MESA_DIR/star/test_suite/1M_pre_ms_to_wd my_project
```

• Delete the MESA_DIR definition from `my_project/make/makefile` (this will cause MESA to pick up the definition from the MESA_DIR environment variable)

• Delete the `mesa_dir` definition from the inlist (this will cause MESA to pick up the definition from the MESA_DIR environment variable)

• Edit the inlist(s)

• Edit source files in `my_project/src`

• Clean, make and run:

```bash
cd my_project; ./clean; ./mk; ./rn
```