GYRE: Yet another oscillation code, why we need it and how it works

Rich Townsend & Seth Teitler
University of Wisconsin-Madison
What might one want from a new code?

- Improved flexibility to handle new problems
 - oscillations with differential rotation & magnetic fields
 - dynamic tides in binary stars
- Greater accuracy and robustness
 - “hands-off” asteroseismic analyses
 - integrated oscillation & stellar evolution simulations
- Higher performance
 - Take advantage of multiple cores / nodes
GYRE: A new oscillation code suite

- Programmatic motivation: developed as part of “Wave transport of angular momentum: a new spin on massive-star evolution” (NSF grant #AST 0908688)

- Personal motivations:
 - why does the BOOJUM code (Townsend 2005) work in cases x and y, but not in case z?
 - I enjoy programming!
Statement of the problem

- Stellar oscillation is a linear two-point boundary-value problem (BVP):

\[
\frac{dy}{dx} = A(x) y
\]

\[
B_a y_a \equiv B_a y(x_a) = 0
\]

\[
B_b y_b \equiv B_b y(x_b) = 0
\]

- The problem specifics are defined by the Jacobian matrix \(A \) and the boundary conditions \(B \)
Alternative approaches to solving BVPs

Shooting

Smeyers (1966, 1967)

Relaxation

Castor (1970)
Alternative approaches to solving BVPs

Shooting

Smeyers (1966, 1967)

Relaxation

Castor (1970)

At a fundamental level, both approaches are the same!
• Replace the differential equations by finite differences on a discrete grid \(x = x^k \) \((k = 1, \ldots, N) \):

\[
\frac{y^{k+1} - y^k}{x^{k+1} - x^k} = A \left(\frac{x^{k+1} + x^k}{2} \right) \frac{y^{k+1} + y^k}{2}
\]

• Combine the difference equations with the boundary conditions to form a large, sparse linear system for \(y^k \)
Shooting via superposition

- Use initial-value problem (IVP) integrator to solve
 \[
 \frac{dY}{dx} = A(x)Y, \quad Y(x_a) = I
 \]

- The fundamental solution \(Y \) relates \(y^b \) back to \(y^a \):
 \[
 y^b = Y(x^b) y^a
 \]

- The BVP becomes a linear system for \(y^a \):
 \[
 B^a y^a = 0 \\
 B^b Y(x^b) y^a = 0
 \]
Multiple shooting: the best of both worlds

- Apply shooting across multiple intervals of a discrete grid \(x = x^k (k = 1, \ldots, N) \):
 \[
 y^{k+1} = Y(x^{k+1}; x^k) y^k
 \]

- Combine with the boundary conditions to form large, sparse linear system for \(y^k \)

- Stability is improved vs. single/double shooting

- Depending on how we evaluate \(Y^{k+1, k} = Y(x^{k+1}; x^k) \), accuracy is improved vs. relaxation

- Multiple shooting is easy to parallelize
Calculating the fundamental solution matrices

- Simple approach following Gabriel & Noels (1976): assume the Jacobian matrix $A(x)$ is constant in each interval $x^k \leq x \leq x^{k+1}$

- The fundamental solution matrix is then a matrix exponential:

$$Y^{k+1; k} = \exp \left\{ \left[x^{k+1} - x^k \right] A \right\}$$

- This approach has \textit{arbitrarily high resolution} of eigenfunction oscillations

- However, it is only second-order accurate
Higher-order approaches using the Magnus method

- Magnus (1954): solutions to the IVP

\[
\frac{dY}{dx} = A(x)Y, \quad Y(x_a) = I
\]

can be written as

\[
Y = \exp \{ M(x) \}
\]

- The Magnus matrix M can be expanded as an infinite series, with leading terms

\[
M(x) = \int_{x_a}^{x} A(x_1) \, dx_1 - \frac{1}{2} \int_{x_a}^{x} \left[\int_{x_a}^{x_1} A(x_2) \, dx_2, A(x_1) \right] \, dx_1 + \ldots
\]
Magnus methods in GYRE

- Integrals in the Magnus expansion are evaluated using Gauss-Legendre quadrature
- Matrix exponentials are evaluated via a spectral decomposition of M:
 $$\exp M = U (\exp \Lambda) U^{-1}$$
- Three choices in GYRE:
 - MAGNUS_GL2 – 2nd order (Gabriel & Noels approach)
 - MAGNUS_GL4 – 4th order
 - MAGNUS_GL6 – 6th order
Stellar oscillation is an eigenproblem

- The oscillation equations appear to be overdetermined:
 - 4 differential equations (adiabatic case)
 - 4 boundary conditions
 - 1 arbitrary normalization condition

- The BVP can only be solved at discrete values of the oscillation frequency ω appearing in the Jacobian matrix

- These discrete values are the eigenfrequencies; the corresponding solutions are the eigenfunctions
Castor’s method

- Replace one of the boundary conditions with the normalization condition
- The BVP can then be solved for any value of the frequency ω
- Use the neglected boundary condition to define a discriminant function $D(\omega)$, such that D is zero when the boundary condition is satisfied
- The roots of $D(\omega)$ then correspond to the stellar eigenfrequencies
Ill-behaved discriminants: The downfall of Castor’s method

With Cowling Approximation

This problem can affect any code which involves a single-point determinant (e.g., GraCo; PULSE; ADIPLS; NOSC)
Ill-behaved discriminants: The downfall of Castor’s method

This problem can affect any code which involves a single-point determinant (e.g., GraCo; PULSE; ADIPLS; NOSC)
Recognizing the problem

- The equations plus boundary conditions can be written as a linear, homogeneous system:

\[Su = 0 \]

\[
S = \begin{pmatrix}
B^a & 0 & 0 & \cdots & 0 & 0 \\
-\gamma^{2;1} & 1 & 0 & \cdots & 0 & 0 \\
0 & -\gamma^{3;2} & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -\gamma^{N;N-1} & 1 \\
0 & 0 & 0 & \cdots & 0 & B^b
\end{pmatrix}, \quad u = \begin{pmatrix}
y^1 \\
y^2 \\
\vdots \\
y^N
\end{pmatrix}
\]
Solution of linear, homogeneous systems

- *Any* system of linear, homogeneous equations admits non-trivial solutions ($\mathbf{u} \neq \mathbf{0}$) when the determinant of the matrix S vanishes.

- Hence, the determinant can be adopted as the discriminant function:

$$D(\omega) = \det S$$

- The determinant is a polynomial in the components of S; if these components are well behaved, then so is D.
Evaluating the determinant in GYRE

- LU decompose the system matrix
 \[S = L U \]
- Form the determinant as the diagonal product
 \[\det S = \prod_{i} U_{i,i} \]
Dealing with determinant overflow

“For a matrix of any substantial size, it is quite likely that the determinant will overflow or underflow your computer’s floating point dynamic range”

Numerical Recipes in Fortran, 2nd ed., “Determinant of a Matrix”

Solution: use extended-precision arithmetic

\[x = f \times 2^e \]

\[f \in \mathbb{R}, \quad 0.25 < f \leq 0.5 \]

\[e \in \mathbb{Z}, \quad |e| \leq 2147483647 \]
Summarizing the GYRE approach

- GYRE uses a *Magnus multiple shooting* (MMS) scheme for BVPs
- Multiple shooting is used for robustness & performance
- Magnus methods are used for accuracy
- A determinant-based discriminant avoids the problems of Castor’s method
- The code is parallelized with both Open MP and MPI
Both discriminants have the same roots; but the determinant-based discriminant is well behaved
Testing convergence with the $n = 0$ polytrope

For each Magnus method, the error in the eigenfrequency has the expected scaling
Inter-comparison of the g-, f- and p-modes calculated using different oscillation codes for a given stellar model

A. Moya · J. Christensen-Dalsgaard · S. Charpinet · Y. Lebreton · A. Miglio · J. Montalbán · M.J.P.F.G. Monteiro · J. Provost · I.W. Roxburgh · R. Scuflaire · J.C. Suárez · M. Suran

In all cases, departures from ESTA results are small.
g-mode inertias in a red giant model

$M = 2.0 \, M_\odot$,
$R = 11.0 \, R_\odot$,
$L = 57.8 \, L_\odot$;

cf. Dupret et al. (2009)
Example eigenfunction of the red giant model

The Magnus method readily handles the highly oscillatory eigenfunctions in the stellar core.
Nonadiabatic eigenfrequencies for a mid-B type star

The mixed adiabatic/nonadiabatic approach is numerically more robust, without sacrificing accuracy.
Rotational splitting in the $n = 0$ polytrope

$-2 \leq m \leq 2$

Non-perturbative; 10 spherical harmonic terms

Modes with $\ell = 0, 2, 4, \ldots$ all appear together
Mode tracking uses the fact that mode frequencies evolve continuously with Ω.
Differential rotation: the $n = 0$ polytrope with core/envelope shear

Simple explanation: the modes are mainly trapped in the envelope
Benchmarking the parallel performance of GYRE

- 1 thread
- 2 threads
- 4 threads
- 8 threads

Tuesday, December 11, 12
The future of GYRE

- Upcoming improvements
 - implement post-processing (e.g., mode inertias, work functions)
 - combine nonadiabatic & differential rotation functionality
 - add centrifugal force, departures from sphericity

- A full description of the code will appear in a forthcoming paper

- Scheduled for open-source release mid-2013

- Pre-release access on request