• The outer solar system
The Jovian Planets

Cassini image of Jupiter, Io, and Io's shadow (NASA/JPL)
The Jovian Planets

- Gas giants in the outer solar system
 - Formed outside of the “ice line” (where water could condense and freeze)
 - Grew massive enough to hold on to cold gas from outer (=colder) proto-solar nebula
 - Primary atmospheres
The Jovian Planets

<table>
<thead>
<tr>
<th>Planet</th>
<th>Average Distance from Sun (AU)</th>
<th>Mass (Earth Masses)</th>
<th>Equatorial radius (Earth radii)</th>
<th>Density (kg/liter)</th>
<th>Rotation Period (days)</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jupiter</td>
<td>5.2</td>
<td>318</td>
<td>11.2</td>
<td>1.33</td>
<td>0.41</td>
<td>Mostly H, He</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.54</td>
<td>94</td>
<td>9.46</td>
<td>0.71</td>
<td>0.43</td>
<td>Mostly H, He</td>
</tr>
<tr>
<td>Uranus</td>
<td>19.2</td>
<td>14</td>
<td>3.98</td>
<td>1.24</td>
<td>0.72</td>
<td>Hydrogen compounds, rock, H, He</td>
</tr>
<tr>
<td>Neptune</td>
<td>30.1</td>
<td>17</td>
<td>3.81</td>
<td>1.67</td>
<td>0.67</td>
<td>Hydrogen compounds, rock, H, He</td>
</tr>
</tbody>
</table>
The Jovian Planets

- Interior:
 - Rock and iron cores
 - Gaseous mantles and cloudy atmospheres
 - *Jupiter* & *Saturn*:
 - Enough gravity to compress hydrogen to liquid and metal form
The Jovian Planets

• Why are Jupiter’s and Saturn’s interiors so tightly compressed?
 ★ Recall: *Hydrostatic equilibrium*
 ★ Outward *pressure* force = inward *gravity* force
 ★ This requires the pressure to *increase inward*

• This is enough to *squeeze* hydrogen atoms so close together that they become a *metal*
 ★ That means the *electrons* are no longer bound to *nucleus*
 ★ Metals are *electric conductors* because electrons *move freely*
Jupiter Weather

Voyager fly-by time lapse (NASA)
Jupiter Weather

- Jupiter emits $2\times$ energy it receives from Sun!
 - **Dark** belts: IR-bright \Rightarrow *warm* interior gas!
 - **White** zones: IR-dark \Rightarrow *cold* surface clouds!
Jupiter Weather

- Jupiter is *heated* from within
- Recall: Liquid or gas heated from below will *rise*
 - Warm, low density gas floats to top
 - Cold, dense gas sinks down
- **Convection**!
 - **Belts**: gas rises to top
 - **Zones**: gas sinks down
- **Conveyor belt** action
Coriolis Effect

• On a *rotating* platform
 ★ Objects that *should* be going *straight* travel on *curved paths*
 ✤ Objects moving inward (towards the axis of rotation) curve *ahead* of the rotation
 ✤ Objects moving outward (away from the axis of rotation) curve such they *lag* the rotation

★ On *Earth* and *Jupiter*:
 ✤ Northern hemisphere winds are deflected *to the right*
 ✤ Southern hemisphere winds are deflected *to the left*
Coriolis Effect

- Earth is a *rotating* platform
 - You can experience the Coriolis effect by throwing a ball on a *merry go round*
 - Point of view of somebody *not* on the merry go round:
 - The merry go round *keeps moving* as the ball flies across
 - In this example, ball is caught by the same person who threw it
 - This is simply because the merry go round rotated as well
Coriolis Effect

- Earth is a *rotating* platform
 - You can experience the Coriolis effect by throwing a ball on a *merry go round*
 - Point of view of somebody *on* the merry go round:
 - The carousel *appears* as not moving
 - But the ball’s path actually turns!
 - On a *rotating* platform, objects move on *curved* paths!
Jet Streams on Jupiter

- Approx. 120 m/s (about 270 mph)
- Approx. 100 m/s (about 220 mph)
- Approx. 40 m/s (about 89 mph)
Jupiter Weather

Voyager fly-by time lapse (NASA)
The Great Red Spot

- A **high** pressure system
 - *Anti-cyclone*
 - centered on a high-pressure system
 - Bigger than *entire* Earth
 - Sits between two jet streams

- Has been **stable** for over 300 years
 - Earth’s storms lose strength over land
 - No *continents* on Jupiter, so no *dissipation*?
Saturn

- Very similar to Jupiter
 - Similar Composition
 - Metallic hydrogen core
 - Similar weather bands

- Quantitative differences:
 - Smaller metal core
 - Smaller magnetic field
 - Much more pronounced ring system
Saturn’s Hexagon

- Saturn’s **hexagon**: Peculiar pattern at **South Pole**
- This is a **stable vortex**
 - Recent **experiments** explain the appearance of this pattern
 - Inner and outer cylinder rotate at **different** rates
 - Hexagon forms when **pole** rotates at **different rate** than equator

Science Magazine, 8 April 2010
Aurora Borealis

- When they hit Earth’s magnetic field
 - They **spiral** around field lines
 - Move down towards **poles**
 - Hit **atmosphere**
 - Excite emission **lines**
Aurorae

- Jupiter and Saturn show **aurorae**
 - **Energetic particles** from the Sun
 - *Trapped* in magnetic field
 - *Collide* with atoms
 - Generate *emission lines*

- Requires:
 - *Strong* magnetic field
 - Jupiter’s magnetic field: **20,000** x stronger than Earth’s!
A magnetic “dynamo” requires:

- Rapid rotation
- A liquid, conducting interior
- Convection
Uranus and Neptune

• Smaller than Saturn & Jupiter
 ★ Not as much hydrogen
 ★ Significant Water content
 ★ Smaller atmospheres
 ★ No metallic hydrogen

• Blue color:
 ★ Methane
 ✤ Absorbs red light
 ✤ Reflects blue light
Uranus rotation

• Uranus axis is tilted by 98°.

• It is thought that this is due to a large planetesimal impact.

• Uranus moons also orbit in a plane that is tilted by the same amount.

• What can we say about Uranus moons?

 ★ They must have formed after the impact
All Jovian planets have ring systems.

Saturn’s rings:
- Discovered by Galileo.
- As Saturn moves through orbit, we can see different orientations of the rings.
- When seen edge-on, rings disappear.
- They must be incredibly thin!
- 70,000 km across
- 20 m thick!
Ring Systems

- Maxwell (1855):
 - No single sheet of matter strong enough to make solid ring
 - Must be made of particles
 - That means the inner rings move faster than the outer rings
 - Doppler shift (measured)

- Ring particles:
 - Snow flake to boulder sized
Ring Structure: Resonances

- Cassini division (and other gaps)
 - 2:1 Resonance
 - Exactly half orbital period of Saturn’s moon Mimas (=2:1)
 - Every other orbits, particles in gap get kicked the same way
 - That alters their orbit, i.e., they get kicked out of the gap
Ring Structure: Resonances

• Cassini division (and other gaps)
 ★ 2:1 Resonance
 ✦ Exactly half orbital period of Saturn’s moon Mimas (=2:1)
 ★ Every other orbits, particles in gap get kicked the same way
 ★ That alters their orbit, i.e., they get kicked out of the gap
 ★ Resonances occur when orbital periods are simple integer ratios
 ✦ E.g., 3:2
Moons inside ring system:

Shepherd moons (Pandora & Prometheus) guide particles into narrow rings.

Inner moon's gravity pulls forward - Moves orbits outward.

Outer moon's gravity pulls back - Moves orbits inward.

Particles pile up in the middle, making a sharp ring.

Prometheus (Cassini, NASA/JPL)

Pandora

Shepherds
Effect on moons on rings
Ring Origins

- Rings are **short-lived** (few hundred million years)
 - Magnetospheres (gas) *drag* particles *off* their *Kepler orbits*.
 - They migrate *inward*, fall onto planet

⇒ Rings must be **replenished** from time to time
 - This explains why Jupiter only has a *mini-ring* system:
 - It just hasn’t had a recent ring injection

- But *how* can we replenish the rings?
 - The answer: *Tides!*
The Roche Limit

- Rings are probably made from *shredded moons*
 - A moon is *held together* by its own *gravity*
 - We know that *tidal forces* pull objects *apart*
 - When *tidal* force becomes *larger* than moon’s own *gravity*
 ⇒ Moon is *ripped apart*

Tides win, moon breaks

Gravity wins, moon stable
The Roche Limit

- **Roche** limit:
 - Inside **2.44 planet radii**, objects can be shredded by tides
 - **Independent** of the size of the moon!
 - Shredding **continues** to smaller and smaller particles
 - ** Stops** only once **other forces** hold matter together
 - **Chemical** forces (rock)
- Jovian Planets:
 - Ring systems all **very close** to Roche radius
One Ring to Rule them all?

- 2009: Spitzer Infra-Red telescope discovered *mysterious* giant ring (200 x larger than other rings)
 - Nature and origin still unclear

Artist’s conception, based on Spitzer observations (NASA/JPL)
Satellite Systems

- **Neptune**: 13 Satellites
- **Uranus**: 27 Satellites
- **Saturn**: 62 Satellites
- **Jupiter**: 63 Satellites

Distance from Planet Center (km)

Earth's Moon for comparison
Satellite Properties:

• Outer solar system satellites:
 ★ Densities below 3kg/liter
 ⇒ Rock and Ice mixture

• Most inner satellites:
 ★ Tidally locked (facing same side to planet)

• Most outer satellites:
 ★ Irregular orbits (high eccentricity and/or inclination)
Satellite Properties:

- **Surface:**
 - Dark color - probably dust
 - Craters show bright, icy interior

- **Satellites** over 400 km diameter:
 - Spherical

- **Satellites** under 400 km diameter:
 - Irregular shapes

- **Why?**
Question:

• Suppose you wanted to build a tall sand castle from dry sand. What size of satellite would you pick to build it on?

A) A big one
B) A small one
C) Size shouldn’t matter

* Bigger moons have higher surface gravity:
 ⇒ Sand castles and other structures will...
 ⇒ Fluffy ice structures will be flattened
 ⇒ *Big moons* pull themselves into *spherical* shape
Satellite Origins

- Where do the satellites **come from**?
 - **Inner** (regular) satellites orbit in planet’s **equatorial plane**
 - **Outer** (irregular) satellite orbits are **different** from rotation

- Inner Satellites:
 - Likely formed with planet from disk
 - **Same process** that formed the **solar system**!

- Outer Satellites:
 - **Captured** comets or asteroids
Capture

- Orbital *capture*
 - Requires a *third* object
 - *Slingshot* into orbit
 - Orbit orientation *random*
 - High *eccentricity*
The Galilean Moons
The Galilean Moons

- **Galilean** Moons, inner to outer:
 - Io, Europa, Ganymede, Callisto ("I Eat Green Carrots")
 - Among the *most interesting* solar system objects
 - All show signs of *geological activity*!
 - Inner satellites more active than outer ones
 - Surface temperatures: 110K - 130K

<table>
<thead>
<tr>
<th>Name</th>
<th>Radius</th>
<th>Mass (lunar masses)</th>
<th>Density (kg/liter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Io</td>
<td>1800km (bulged)</td>
<td>1.22</td>
<td>3.5</td>
</tr>
<tr>
<td>Europa</td>
<td>1560km</td>
<td>0.66</td>
<td>3.0</td>
</tr>
<tr>
<td>Ganymede</td>
<td>2631km</td>
<td>2.03</td>
<td>1.9</td>
</tr>
<tr>
<td>Callisto</td>
<td>2410km</td>
<td>1.48</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Io
Io

- Young surface
 - No impact craters
 - Freshly covered in sulfur compounds
 - Active *volcanoes*!

⇒ *Liquid* interior! But why?

- *Tidal* heating
- But it is *phase locked* to Jupiter!
- It’s *Europa’s* tides that heat Io!

⇒ All *water* evaporated ⇒ high density!
Tidal heating of Io
Europa

- Surface
 - Very few impact craters
 - Covered with cracks
 - Water ice
 - "Freckles": Volcanic bumps (recall: pancake domes on Venus)
- Red surface pigmentation: Mineral rich water seepage
Europa

• Tidal heating from Io and Ganymede
 ★ Europa possibly has *liquid ocean* underneath Ice surface
 ★ Conditions might be *suitable* for existence of *life!*

• Ice geology
 ★ In outer solar system, water *ice* acts like *rock*, water as magma
 ★ Similar tectonic process as on Earth
Ganymede & Callisto

- **Ganymede:**
 - 800 km thick ice crust
 - Some fault lines, few craters
 - Possibly molten core and subsurface ocean

- **Callisto:**
 - Least differentiated
 - Oldest surface
 - Least amount of tidal heating