Star Formation

• Stars form out of gas → if you want to identify/study star formation you need to find the gas

• What kind of gas? Molecular!!!!!
 ▫ Cold → gravity must overcome the thermal pressure of a cloud so it collapses
 ▫ Dense
 ▫ Require mm-wave telescopes → ALMA → next few slides come from a talk by Neal Evans (Texas) promoting ALMA (Atacama Large Millimeter Array)
ALMA Site - Northern Chile
Even “Isolated” SF Clusters

Taurus Molecular Cloud
Prototypical region of
“Isolated” star formation

Dots = embedded star clusters;
Contours = molecular cloud

Myers 1987
Taurus Cloud at same scale
4 dense cores, 4 obscured stars
~15 T Tauri stars

Orion Nebula Cluster
>1000 stars
2MASS image
The Basic Features

Envelope
Disk
Protostar
Jet/wind/outflow

T. Greene
A key observation is to observe the infalling gas in redshifted absorption against the background protostar.

- Very high spectral resolution (<0.1 km/s) is required.
- High sensitivity to observe in absorption against disk.
Low Mass Cores: Gross Properties

- Molecular cloud necessary, not sufficient
 - High density ($n > 10^4 \text{ cm}^{-3}$)
 - Low turbulence
- Centrally peaked density distribution
 - Power law slope ~ high mass
 - Fiducial density ~ 100 times lower
- Complex chemistry, dynamics even in 1D
 - Evidence for infall seen, but hard to study
 - Outflow starts early, strong effect on lines
 - Rotation on small scales
Open Questions

• **Initial conditions**
 - Cloud/core interaction
 - Trace conditions in core closer to center
 - Inward motions before point source?

• **Timescales for stages**

• **Establish existence and nature of infall**
 - Inverse P-Cygni profiles against disks
 - Chemo-dynamical studies

• **Envelope-Disk transition**
 - Inner flow in envelope

• **Outflow dynamics**
 - Nature of interaction with ambient medium
Planet Formation

• Best studied around isolated stars
• Origin and evolution of disk
• Gaps, rings, ...
• Debris disks as tracers of planet formation
• Chemistry in disks
 ▫ Evolution of dust, ices, gas
Planet Formation

SMM image of Vega shows dust peaks off center from star (*). Fits a model with a Neptune like planet clearing a gap. This is with 15-m at 850 microns and 15" resolution.

ALMA can do at higher resolution.

With higher resolution

Vega also observed by Wilner et al. (2003). Model of resonance with planet.
Simulation Contains:
* 140 AU disk
* inner hole (3 AU)
* gap 6-8 AU
* forming giant planets at:
 9, 22, 46 AU with local over-densities
* ALMA with 2x over-density
* ALMA with 20% under-density
* Each letter 4 AU wide, 35 AU high

Observed with 10 km array
At 140 pc, 1.3 mm
Open Questions

- How the disk initially forms
- Timescales for disk evolution
- How planets form in the disk
 - Core accretion or Gravitational Instability
- How unusual the solar system is
 - Systems with giant planets out where ours are
- Evolution of dust, ice, gas in disk
 - Building blocks for planets
Requirements

- Maximum Spatial resolution
 - Image fidelity (gaps will be hard to see)
- Best sensitivity
 - Especially for debris disks
- Flexible correlator, receiver bands
 - Chemistry

All this says is that we need to build ALMA – 1st light 2011 or so
Formation of a Planetary System (or what happens in the disk?)
2nd Phase - Collisional Accretion

- **Sticky collisions**
 - \(V_i = (V^2 + V_e^2)^{1/2} \) = impact velocity
 - \(V_e = \left[\frac{2G(M_1 + M_2)}{(R_1 + R_2)} \right]^{1/2} \)
 - If \(V_i < V_e \) \(\rightarrow \) bodies remain bound \(\rightarrow \) accretion

- **Growth rate**
 - \(\frac{dM}{dt} = \rho v \pi R^2 F_g \) or \(R^2 \Sigma \Omega F_g \)/(2\pi)
 - \(F_g = \) cross-section = \(1 + \left(V_e / V \right)^2 \)
 - \(\frac{dR}{dt} = \left(\frac{\rho_d v}{\rho_p} \right) (1 + \left[\frac{8\pi G \rho_p R_p^2}{3v^2} \right]) \)
 - \(\rho_d = \) mass density in disk
 - \(\rho_p = \) mass density of planetesimals
 - \(V = \) average relative velocity
 - \(R_p = \) radius of planetesimals
Collisional Accretion continued

• If \(V_e >> V \), then \(\frac{dR}{dt} \) goes as \(R^2 \rightarrow \) big things grow rapidly (note that we can’t have collisions at the escape velocity!)

• Can evaluate growth rate using \(R_1= R_2 \) (same assumption for \(V \))

• Formation of rocky/solid cores \(\rightarrow \) next step is accretion

 ▫ \(R_{\text{accretion}} = \frac{GM_p}{c^2} \) (\(c \) = speed of sound)
Terrestrial Planet Formation
Raymond, Quinn, Lunine (2005)

• Ingredients to any model
 ▫ Physics → collisional accretion/orbital evolution
 • $\frac{dR}{dt} = \left(\frac{3}{\pi}\right)^{1/2}(\sigma n/4\rho)F_g$
 • $F_g = 1 + \left(\frac{v_e}{v}\right)^2$
 • $\rho =$ density of embryo
 • $\sigma =$ surface mass density (~ 10 g cm$^{-2}$)
 • $n =$ orbital angular velocity
 ▫ Mass of the pre-solar disk
Terrestrial Planet Formation
Raymond, Quinn, Lunine (2005)

- **Ingredients to any model**
 - **Mass of the pre-solar disk**
 - MMSN → how much stuff do we need simply to account for the amount of heavy elements in the current planets
 - Any reason this should be right?
 - **Surface density distribution**
 - Power law! → \(\Sigma(r) = \Sigma_0 r^{-\alpha} \)
 - What’s \(\alpha \) → 0.5, 1.5, 2.5
 - What’s \(\Sigma_0 \) → 5.7, 13.5, 21.3 g cm\(^{-3}\)
 - **Distribution of “embryos”**
 - Each embryo has its own “feeding zone” (3\(R_H\))
Terrestrial Planet Formation
Raymond, Quinn, Lunine (2005)

• Ingredients to any model
 ▫ Mass of the pre-solar disk
 • MMSN → how much stuff do we need simply to account for the amount of heavy elements in the current planets
 • Any reason this should be right?
 ▫ Surface density distribution
Terrestrial Planet Formation
Raymond, Quinn, Lunine (2005)
Formation of Terrestrial Planets

Raymond, Quinn, Lunine (2005)

- Larger $\alpha \rightarrow$ innermost planet resides at ~ 0.5AU; smaller $\alpha \rightarrow$ most distant innermost planet
- Steeper density gradient \rightarrow more planets in a shorter time
- Larger planets at 5AU scatter material out of solar system (e.g. Jupiter)
- Most simulations end up with several terrestrial planets
- Timescales \rightarrow 20-50 Myr
Formation of the Moon

- **Old Theories**
 - Fission \(\rightarrow \) no way! Breakup speed of Earth is far too high – and why aren’t the compositions identical?
 - Captured \(\rightarrow \) really hard to do – and why are they so similar chemically?
 - Same time, same place \(\rightarrow \) did they form together? Compositions should be identical (5.5 vs 3.7 g cm\(^{-3}\))

- **Giant Impact** \(\rightarrow \) Mars-sized impactor \(\rightarrow \) hey, impacts happen
Key Components

• Moon ultimately made of Earth’s mantle and impactor \rightarrow lack of Fe
• Moon generally lacks volatiles, but oxygen isotope ratio is identical to Earth
• Enough material thrown off to gravitationally collapse into moon
Simulations – just show that it’s physically possible
Giant Planet Formation

- **Gas-instability**
 - Hard to explain relatively high fraction of condensable elements
 - Need very high disk mass density → think of Jeans mass
 - Doesn’t account for smaller bodies
 - But, it’s a lot faster than...

- **Core-Accretion**
Giant Planet Formation

- **Gas-instability**
 - Hard to explain relatively high fraction of condensable elements
 - Need very high disk mass density
 - \(Q = \frac{\kappa C_s}{\pi \Sigma G} < 1.4 \)
 - Doesn’t account for smaller bodies
 - But, it’s a lot faster than...

- **Core-Accretion**
 - Growth of planetary embryos \(\rightarrow \) once collisional accretion time = gas accretion timescales get runaway growth
 - Collapse of planet once accretion stops
Core-Accretion

- Phase 1 \rightarrow solid core accretes to $10 \, M_{\text{Earth}}$ in $\sim 10^6$ years (collisional accretion)
Core-Accretion

- Phase 1 \rightarrow solid core accretes to $10 \, M_{\text{Earth}}$ in $\sim 10^6$ years (collisional accretion)
- Phase 2 \rightarrow growth rate decreases (for core) while envelope growth rate increases (gas) until $M_{\text{env}} \sim M_{\text{core}}$
Core-Accretion

- Phase 1 → solid core accretes to $10 M_{\text{Earth}}$ in $\sim 10^6$ years (collisional accretion)
- Phase 2 → growth rate decreases (for core) while envelope growth rate increases (gas) until $M_{\text{env}} \sim M_{\text{core}}$
- Phase 3 → M_{env} increases
Core-Accretion

- Phase 1 → solid core accretes to $10 \, M_{\text{Earth}}$ in $\sim 10^6$ years (collisional accretion)
- Phase 2 → growth rate decreases (for core) while envelope growth rate increases (gas) until $M_{\text{env}} \sim M_{\text{core}}$
- Phase 3 → M_{env} increases
- Still serious issues with timescales → how long do these things really take???????
Core-Accretion

- Phase 1 \rightarrow solid core accretes to $10 \, \text{M}_{\text{Earth}}$ in $\sim 10^6$ years (collisional accretion)
- Phase 2 \rightarrow growth rate decreases (for core) while envelope growth rate increases (gas) until $M_{\text{env}} \sim M_{\text{core}}$
- Phase 3 \rightarrow M_{env} increases
- Still serious issues with timescales \rightarrow how long do these things really take??????
- Must have planet migration \rightarrow can’t do all this too close to the star
 - Temperatures too hot for condensation
 - Not enough mass
Formation of Uranus and Neptune (Thommes, Duncan, Levison 2002)

- Dynamical timescales simply too long
- Did their cores form near J & S
 - Start with 10 M_{Earth} rock/ice cores and let them grow
 - $R_H = (M_p / 3M_*)^{1/3}a$ (a = semi-major axis), in solar masses → increase mass by 30, increase R_H by factor of 3 → scattering
 - Scattered cores eventually circularize if density is high enough → become Uranus and Neptune
 - Small things → Kuiper Belt; big things → Uranus & Neptune
What it Looks Like Now
Thommes et al simulation

Fig. 6.—Final states of the eight set 1 runs after 5 Myr of simulation time, except for A and I, which were continued on to 10 Myr. Eccentricity is plotted vs. semimajor axis. Three different sizes of points denote planetesimals (smallest), 10 M⊕ protoplanets (medium), and Jupiter (largest). Planetesimal orbits crossing Jupiter or any of the protoplanets are generally unstable on timescales short compared to the age of the solar system; thus, the regions among the protoplanets would be essentially cleared of planetesimals long before the present epoch.
Solar System Formation Simulation

Levison et al.