Review/Announcements

- Homework #1 handed out today
- Last time
 - Review of various space missions
 - Course goals etc
 - Observing planets
 - Atmospheres
 - Geophysics
What is a planet?

- Nearly spherical – shape determined by self-gravity
- Orbit – low inclination, low eccentricity
- Potential for an atmosphere
- Differentiated interior
- Primary orbit around a star
- Low mass → no fusion
- Clears “zone”
Orbits – a little history

- Ptolemy: Earth-centered with epicycles
- Copernicus: Sun-centered, circular orbits (with a little help from Galileo)
- Kepler: Sun-centered, elliptical orbits
 - Planets orbit in elliptical orbits with Sun at one focus
 - Orbits sweep out equal areas in equal times
 - \(P^2 \) is proportional to \(a^3 \)
- Newton: inverse square law of gravitation
- Einstein: general relativity and the precession of Mercury’s orbit
Newton’s Law \Rightarrow Kepler’s Laws

1. Law of gravitation for m_1 and m_2...
 1. Derive equation of relative motion
 2. Coordinate change to polar coordinates with an origin on m_1
 2. Motion of m_2 about m_1 lies in a plane perpendicular to the angular momentum vector
 3. Consider $\delta A \sim 1/2r(r+\delta r)\sin \delta \theta \sim r^2/2(\delta \theta)$ (ignoring 2nd and 3rd order terms)
 4. Divide by δt, and as δt goes to 0 we get
 1. $dA/dt = (1/2)r^2(d\theta/dt) = (1/2)h$
 2. $h = \text{constant} \Rightarrow \text{orbits sweep out equal areas in equal times}
Newton’s Law \Rightarrow Kepler’s Laws

- Equation of relative motion in polar coordinates, with \(u = (1/r) \)
 - \((d^2u/d\theta^2) + u = \mu/h^2 \)
 - \(\mu = G(m_1 + m_2) \)

- Solution is a differential equation with solution:
 - \(u = (\mu/h^2)[1 + e \cos(\theta - \omega)] \)
 - \(e = \) an amplitude
 - \(\omega = \) a phase
Newton’s Law → Kepler’s Laws

- Invert to show that the general solution to an orbit of one mass around another is something that could be an ellipse → Kepler’s first law.

- \(r = \frac{P}{1 + e \cos(\theta - \omega)} \), which is the equation of a conic in polar coordinates
 - Circle: \(e = 0, \ p = a \)
 - Ellipse: \(0 < e < 1, \ p = a(1 - e^2) \)
 - Parabola: \(e = 1, \ p = 2a \)
 - Hyperbola: \(e > 1, \ p = a(e^2 - 1) \)
Kepler’s Laws

- In general $e << 1$ for “planets”
 - Pluto ($e=0.25$)
 - Mercury ($e=0.21$)
 - Nereid ($e=0.75$)

- $r = \frac{a(1-e^2)}{1-e \cos(\theta-\omega)}$

 - θ = true longitude = reference direction = “vernal equinox”
 - ω = longitude of pericenter = angle between periapse and reference direction
 - f = true anomaly = $\theta-\omega$ = angle between object and periapse
 - a = semi-major axis, b = semi-minor axis, $b^2=a^2(1-e^2)$
Example Orbit

Green = Sun

Magenta = pericenter

Semimajor axis = 1.5

Eccentricity = 0.001

True Anomaly = 67 degrees

Argument of pericenter = 43 degrees
Another example

Semimajor axis = 7.3

Eccentricity = 0.23

True anomaly = 12 degrees

Longitude of pericenter = 82

Show that pericenter = 5.621 AU
Kepler’s 3rd Law

- Recall \(\frac{dA}{dt} = (1/2)h \) \(\Rightarrow h^2 = \mu a (1 - e^2) \). If \(A = \pi ab \), then \(T^2 = (4\pi^2/\mu)a^3 \). This is Kepler’s 3rd Law.

- Consider the case of two small objects orbiting a third larger body:
 - \(\frac{(m_2 + m_1)}{(m_3 + m_2)} = \left(\frac{a_1}{a_2}\right)^3 \left(\frac{T_1}{T_2}\right)^2 \)
 - \(m_3 = \text{asteroid}, \ m_2 = \text{asteroid’s moon}, \ m_1 = \text{Galileo probe} \) \(\Rightarrow \) get accurate mass of asteroid \(\Rightarrow \rho \sim 2.6 \text{ g cm}^{-3} \)
More fun with orbits…

- Integrate equation of relative motion…

 \[\frac{1}{2}v^2 - \left(\frac{\mu}{r} \right) = \text{constant} \]

 Just says that orbital energy per mass is conserved

- Define mean motion as \(n = \frac{2\pi}{T} \)

- One can show:

 \[V^2(r) = 2GM\left(\frac{1}{r} - \frac{1}{2a} \right) \quad \text{(vis viva equation)} \]

 \[V_p = na\left[\frac{(1+e)}{(1-e)} \right]^{1/2} \]

 \[V_a = na\left[\frac{(1-e)}{(1+e)} \right]^{1/2} \]
More fun with orbits...

- In cartesian coordinates
 - \(x = r \cos f, y = r \sin f \) (\(f \) = true anomaly)
 - \(xdot = -(na/(1-e^2)^{1/2})\sin f \)
 - \(ydot = (na/(1-e^2)^{1/2})(e+\cos f) \)

- Given \(f \) we can calculate the orbital radius and velocity of a body – what we really want is to be able to make predictions about where the body will be in the future.

- Define “eccentric anomaly”, \(E \) = angle between major axis and the radius from the center to the intersection point on a circumscribed circle of radius, \(a \).

- Define “mean anomaly”, \(M = n(t-\tau) \), \(\tau \) is the time of pericenter passage.
 - \(t = \tau, M=f=0 \)
 - \(t = \tau + (T/2), M = f = \pi \)
 - Then \(x = a(\cos E - e), y = a(1-e^2)\sin E \), and \(r=a[1-e\cos E]^{1/2} \)