Niobium-Zirconium Chronometry and Early Solar System Development

Maria Schönbächler,1,e Mark Rehkämper,1 Alex N. Halliday,1 Der-Chuen Lee,1 Michèle Bourot-Denise,3 Brigitte Zanda,3,4 Bodo Hattendorf,2 Detlef Günther2

Niobium-92 (92Nb) decays to zirconium-92 (92Zr) with a half-life of 36 million years and can be used to place constraints on the site of ρ-process nucleosynthesis and the timing of early solar system processes. Recent results have suggested that the initial 92Nb/93Nb of the solar system was high ($>10^{-3}$). We report Nb-Zr internal isochrons for the ordinary chondrite Estacado (H6) and a clast of the mesosiderite Vaca Muerta, both of which define an initial 92Nb/93Nb ratio of $\sim 10^{-5}$. Therefore, the solar system appears to have started with a ratio of $<3 \times 10^{-5}$, which implies that Earth’s initial differentiation need not have been as protracted as recently suggested.

Some extinct radionuclides were sufficiently abundant at the start of the solar system that they produced variations in the abundance of their daughter isotopes in early-formed objects (1). Such nuclides provide information about late-stage presolar nucleosynthetic sites and the time scales over which the early solar system formed and first differentiated (2–4). Of considerable interest in this regard is 92Nb, which decays by electron capture with a half-life of 36 ± 3 million years (My) to 92Zr (5, 6). 92Nb is a shielded nuclide that forms by the ρ-process only. The ρ-process is a nucleosynthetic process that occurs in supernovae and produces proton-rich nuclides. Therefore, the initial abundance of 92Nb provides information on stellar nucleosynthesis before the start of the solar system.

Both Nb and Zr are refractory and lithophile, except under reducing conditions when Nb may become siderophile (7). Within the Earth the dominant Nb/Zr fractionation mechanisms are silicate partial melting (8) and the crystallization of accessory minerals such as zircon, ilmenite, and rutile. The Zr isotopic compositions of early reservoirs can therefore vary in response to early differentiation processes and can help in dating planetary differentiation, if the initial abundance of 92Nb (or 92Nb/93Nb) was sufficiently high.

Early results demonstrated that the initial 92Nb/93Nb of the solar system was <0.007 (9). Evidence of formerly live 92Nb was first identified in a Nb-rich rutile from the iron meteorite Toluca (10). An initial 92Nb/93Nb of 1.6 (± 0.3) $\times 10^{-5}$ was inferred. More recently, three studies using a multiple-collector inductively coupled plasma mass spectrometer (MC-ICPMS) proposed that the initial 92Nb/93Nb ratio of the solar system was higher by two orders of magnitude ($\sim 10^{-3}$) (11–13). Such a high value limits the possible sites for ρ-process nucleosynthesis and places specific constraints on the time scales for the development of differentiated reservoirs on the Earth and Moon. For example, it has been argued that large silicate reservoirs in the Earth and Moon formed >50 My after the start of the solar system (12). However, such a result requires that the Toluca rutile grew very late (>200 My). In contrast, a combined Zr isotopic and U-Pb age study of an early zircon from a eucrite implied that the initial 92Nb/93Nb ratio was $<10^{-4}$ (14).

Here, we used the internal isochron approach to determine the initial 92Nb/93Nb ratio of the solar system. Two meteorites were studied in which ilmenite with high Nb/Zr is in textural equilibrium with other phases having intermediate Nb/Zr. Because the half-life of 92Nb is long (36 My) and the level of uncertainty concerning the initial solar system abundance is more than two orders of magnitude, the critical concern is not the exact age of the meteorite (provided it is reasonably early) but the acquisition of a reliable isochron from a coherent suite of phases that remained undisturbed after their formation. Therefore, we used the equilibrated but only weakly shocked (S1) H6 ordinary chondrite Estacado, which has a single generation of ilmenite, and a eucritic clast from the mesosiderite Vaca Muerta.

Using a Nu Plasma MC-ICPMS, we were able to measure 92Zr with an external precision of ± 0.3% (2σ standard deviation) for samples with only 50 ng of Zr (15). The Nb/Zr ratios were determined by inductively coupled plasma dynamic reaction cell mass...
spectrometry (ICP-DRCMS) without chemical separation (15, 16).

To check for terrestrial Zr isotope anomalies and test our ability to measure the isotopic composition of Zr extracted from different matrices, we analyzed 12 early zircons ([aliquots of those described by (17)]), two basalts and a rhyolite (from Iceland), a herzolite (Cameroon Line), and ilmenite (from Russia) (15). The analyzed zircons have ages of up to 4100 Ma (million years ago) (17) and are among the oldest terrestrial minerals. Variations in the Zr isotopic composition of old rocks or minerals are expected only if the initial ^{92}Nb abundance is extremely high. For a solar system initial $^{92}\text{Nb}/^{93}\text{Nb}$ ratio of 10^{-5}, there will be no detectable Zr isotopic effects even in the oldest terrestrial zircons. Earlier studies (12, 14, 18) reached differing conclusions regarding the homogeneity of terrestrial Zr. However, our $^{92}\text{Zr}/^{90}\text{Zr}$, $^{91}\text{Zr}/^{90}\text{Zr}$, and $^{96}\text{Zr}/^{90}\text{Zr}$ ratios for terrestrial samples are identical with the value obtained for a standard solution of National Institute Standards and Technology Standard Reference Material 3169 Zr and do not indicate any variation in the Zr composition of Earth (15). This implies a homogenous distribution of Zr isotopes for the bulk silicate Earth. The mineral fractions (15) and whole-rock data for Estacado and the Vaca Muerta clast both define isochrons, but with limited variation in $^{92}\text{Zr}/^{90}\text{Zr}$ (Fig. 1). The Estacado whole-rock sample and the mineral fractions of olivine/pyroxene and chromite all agree with the terrestrial Zr isotopic composition within analytical uncertainty. However, the ilmenite with a Nb/Zr ratio 20 times that of chondritic (0.065) yields an $^{92}\text{Zr}/^{90}\text{Zr}$ of $+1.0 \pm 0.4$. The results for Vaca Muerta are similar (Table 1). The slope of the regression line defines an initial $^{92}\text{Nb}/^{93}\text{Nb}$ at the time of closure of 1.2 (±0.6) \times 10^{-5} for Estacado (Fig. 1A) and 0.6 (±0.3) \times 10^{-5} for Vaca Muerta (Fig. 1B). These values are effectively identical to the Toluca results (10) and are consistent with the zircon data for the Camel Donga eucrite (14).

A high initial $^{92}\text{Nb}/^{93}\text{Nb}$ on the order of 10^{-3} was obtained for specific calcium-aluminum-rich inclusions (CAI) from Al- lende (12, 13). The CAIs are believed to be among the earliest objects that formed in the solar system (19). The production rate of cosmogenic ^{92}Zr is too small to generate significant variations in the calculated initial $^{92}\text{Nb}/^{93}\text{Nb}$ ratios (20). Both ^{92}Zr and ^{96}Zr isotope anomalies have been reported for CAIs (15). Therefore, the possibility remains that CAIs preserve a component with a presolar Zr isotope signature, analogous to those reported for presolar graphite grains (21). A heterogeneous distribution of ^{92}Nb in the early solar system could also cause different estimates of the initial abundance of ^{92}Nb. This would require a variability in the initial $^{92}\text{Nb}/^{93}\text{Nb}$ between 10^{-3} and 10^{-5} and should produce measurable ^{92}Zr anomalies in whole-rock meteorites. However, the observed ^{92}Zr isotopic variations in bulk chondrites (13) have not been yet confirmed (12, 22). This indicates that further work is needed to confirm and understand these reported ^{92}Zr anomalies.

One way to reconcile the various results is resetting or slow cooling (>200 My) of the samples yielding low values: Toluca, Vaca Muerta, Camel Donga, and Estacado. This is inconsistent with a considerable amount of independent age data. Estacado (H6) yields a K-Ar age (4450 Ma) only 30 My younger than Kernouvé (another H6 chondrite) (23), which is likely to have experienced the same events as all H6 chondrites. The Pb-Pb age of phosphates extracted from Kernouvé (H6) and Guarena (H6) indicate that these meteorites underwent a metamorphic event or cooling around 45 My and 61 My, respectively, after the formation of the Allende CAIs (19). The H6 chondrites are, therefore, early objects and their equilibrated textures cannot be of late origin. The Sm-Nd chronology of Vaca Muerta clasts (24) and the U-Th-Pb systematics of Vaca Muerta zircons (25) yield similar ages of 4480 ± 190 Ma and 4430 ± 190 Ma.
To provide more direct time constraints, we have acquired HF-W isotope data for some of the Estacado and Vaca Muerta mineral separates (15). 182Hf (half-life = 9 My) decays to 182W such that W isotopic variations can only be produced within the first 50 My of the solar system. Small excesses of 182W relative to the solar system. Even if this error is increased slightly to allow for systematic Hf-W uncertainties, there is little doubt that Estacado and Vaca Muerta last underwent internal W isotope equilibration within the first 20 My of solar system history. Therefore, the apparent discrepancy with other recently published Nb-Zr data cannot be explained easily by later equilibration. The Estacado initial 92Nb/93Nb of 1.2 ($\pm 0.6 \times 10^{-3}$) should be very close to the solar system initial abundance within a factor of 2 (Fig. 2). The slightly lower initial 92Nb/93Nb of Vaca Muerta is consistent with the Hf-W evidence for a later closure of the phases in the mesosiderite relative to Estacado. However, both initial 92Nb/93Nb values are identical within the analytical errors, consistent with independent evidence for early planetesimal differentiation (27, 28).

182Hf/180Hf of 7.68 ($\pm 0.8 \times 10^{-5}$). Therefore, these phases appear to have last equilibrated 14.8 \pm 1.3 My after the start of the solar system. Even if this error is increased somewhat to allow for systematic Hf-W uncertainties, there is little doubt that Estacado and Vaca Muerta last underwent internal W isotope equilibration within the first 20 My of solar system history. Therefore, the apparent discrepancy with other recently published Nb-Zr data cannot be explained easily by later equilibration. The Estacado initial 92Nb/93Nb of 1.2 ($\pm 0.6 \times 10^{-3}$) should be very close to the solar system initial abundance within a factor of 2 (Fig. 2). The slightly lower initial 92Nb/93Nb of Vaca Muerta is consistent with the Hf-W evidence for a later closure of the phases in the mesosiderite relative to Estacado. However, both initial 92Nb/93Nb values are identical within the analytical errors, consistent with independent evidence for early planetesimal differentiation (27, 28).

Table 1. Zr isotopic data and Nb and Zr concentration data. 92Zr = ($[^{92}$Zr/90Zr]$_{std} - [^{92}$Zr/90Zr]$_{std,108}$)/$[^{92}$Zr/90Zr]$_{std}$ = 0.3333383 for 92Zr/90Zr, 0.217930 for 92Zr/90Zr, and 0.054372 for 92Zr/90Zr.

The quoted analytical uncertainties for the Zr isotopic compositions and εZr values refer to the least significant digits only. The εZr values do not include uncertainties for the standard. The εZr long-term external reproducibilities, based on multiple measurements of the standard over a period of more than a year, are 0.3, 0.4, and 1.2 ε units for 92Zr/90Zr, 91Zr/90Zr, and 90Zr/90Zr, respectively (15).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nb (ppm)</th>
<th>Zr (ppm)</th>
<th>92Nb/93Nb $\pm 2\sigma$ mean</th>
<th>92Zr/90Zr $\pm 2\sigma$ mean</th>
<th>ε^{92}Zr $\pm 2\sigma$ mean</th>
<th>ε^{91}Zr $\pm 2\sigma$ mean</th>
<th>ε^{90}Zr $\pm 2\sigma$ mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivine + pyroxene</td>
<td>0.47</td>
<td>3.6</td>
<td>0.253 \pm 0.020</td>
<td>0.333387 \pm 0.12</td>
<td>0.13 \pm 0.35</td>
<td>-0.59 ± 0.66</td>
<td>-0.59 ± 0.66</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>83.5</td>
<td>58</td>
<td>2.58 \pm 0.36</td>
<td>0.333417 \pm 0.13</td>
<td>1.01 \pm 0.38</td>
<td>0.11 \pm 0.38</td>
<td>0.11 \pm 0.38</td>
</tr>
<tr>
<td>Whole rock</td>
<td>0.51</td>
<td>6.4</td>
<td>0.154 \pm 0.008</td>
<td>0.333387 \pm 0.07</td>
<td>0.11 \pm 0.22</td>
<td>0.12 \pm 0.26</td>
<td>0.27 \pm 0.90</td>
</tr>
<tr>
<td>Chromite</td>
<td>0.29</td>
<td>1.2</td>
<td>0.466 \pm 0.004</td>
<td>0.333888 \pm 0.13</td>
<td>0.15 \pm 0.39</td>
<td>0.15 \pm 0.39</td>
<td>0.75 \pm 1.41</td>
</tr>
<tr>
<td>Trolite (fraction a)</td>
<td>0.057</td>
<td>0.83</td>
<td>0.132 \pm 0.018</td>
<td>0.333896 \pm 0.36</td>
<td>0.17 \pm 1.08</td>
<td>-1.37 ± 1.00</td>
<td>-1.37 ± 1.00</td>
</tr>
<tr>
<td>Vaca Muerta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ilmenite/trolite</td>
<td>56.2</td>
<td>73</td>
<td>1.50 \pm 0.09</td>
<td>0.333389 \pm 6</td>
<td>0.19 \pm 0.18</td>
<td>-0.19 ± 0.17</td>
<td>0.67 ± 0.45</td>
</tr>
<tr>
<td>Whole rock</td>
<td>3.9</td>
<td>43</td>
<td>0.173 \pm 0.004</td>
<td>0.333384 \pm 5</td>
<td>0.02 \pm 0.16</td>
<td>-0.14 ± 0.16</td>
<td>0.10 ± 0.36</td>
</tr>
<tr>
<td>Feldspar</td>
<td>0.64</td>
<td>4.3</td>
<td>0.284 \pm 0.012</td>
<td>0.333884 \pm 7</td>
<td>0.00 \pm 0.20</td>
<td>-0.19 ± 0.13</td>
<td>0.70 ± 0.45</td>
</tr>
<tr>
<td>Pyroxene</td>
<td>2.5</td>
<td>26</td>
<td>0.190 \pm 0.012</td>
<td>0.333882 \pm 6</td>
<td>-0.04 ± 0.18</td>
<td>-0.09 ± 0.12</td>
<td>0.10 ± 0.42</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>249.1</td>
<td>208</td>
<td>2.31 \pm 0.09</td>
<td>0.333400 \pm 4</td>
<td>0.52 \pm 0.11</td>
<td>-0.05 ± 0.12</td>
<td>0.42 ± 0.26</td>
</tr>
<tr>
<td>Heavy minerals</td>
<td>41.9</td>
<td>18</td>
<td>4.41 \pm 0.27</td>
<td>0.333406 \pm 5</td>
<td>0.69 ± 0.15</td>
<td>-0.07 ± 0.13</td>
<td>0.65 ± 0.47</td>
</tr>
</tbody>
</table>
...for the solar system of 1×10^{-8} to 4.6×10^{-5}, if the free decay interval is not considered. Our estimate based on Estacado falls into this range. Taking into account the free decay interval [up to 50 My (10)] may further lower the calculated value by a factor of 2 or more. Nonetheless, most production ratio yields of different supernova models (type Ia and type II) are quite similar to our measured value of 1.2 (± 0.6) $\times 10^{-5}$. Thus, our data provide only limited constraints on the type of supernova that produced the 92Nb initially present in the solar system.

References and Notes

15. Details of analytical methods and supplementary data are available on Science Online at www.sciencemag.org/cgi/content/full/295/5560/1705/DC1.
40. A. G. W. Cameron, Icarus 1, 13 (1962).
41. We thank three anonymous reviewers for their helpful comments, the Museum of Natural History in Paris for provision of the sample of Estacado, R. Hewins for the sample of Vaca Muerta, and Y. Amelin for the terrestrial zircon samples. Supported by Swiss National Funds and ETH.

Imaging Sites of Receptor Dephosphorylation by PTP1B on the Surface of the Endoplasmic Reticulum

Fawaz G. Haj, Peter J. Verveer, Anthony Squire, Benjamin G. Neel, Philippe I. H. Bastiaens

When bound by extracellular ligands, receptor tyrosine kinases (RTKs) on the cell surface transmit critical signals to the cell interior. Although signal termination is less well understood, protein tyrosine phosphatase–1B (PTP1B) is implicated in the dephosphorylation and inactivation of several RTKs. However, PTP1B resides on the cytoplasmic surface of the endoplasmic reticulum (ER), so how and when it accesses RTKs has been unclear. Using fluorescence resonance energy transfer (FRET) methods, we monitored interactions between the epidermal- and platelet-derived growth factor receptors and PTP1B. PTP1B-catalyzed dephosphorylation required endocytosis of the receptors and occurred at specific sites on the surface of the ER. Most of the RTKs activated at the cell surface showed interaction with PTP1B after internalization, establishing that RTK activation and inactivation are spatially and temporally partitioned within cells.

Most peptide growth factors signal through receptor tyrosine kinases (RTKs). Growth factor binding promotes oligomerization of receptors at the plasma membrane, which leads to receptor activation and the phosphorylation of multiple receptor tyrosyl residues. These tyrosyl phosphorylation sites recruit proteins with Src homology 2 and phosphotyrosine-binding domains, thereby assembling multiprotein complexes that propagate the signal. The amount of phosphotyrosine on RTKs, and thus their signaling capacity, is determined by the balance between RTK activity and the activities of specific protein–tyrosine phosphatases (PTPs). Several PTPs have been implicated in RTK dephosphorylation, but exactly how, when, and where RTK inactivation takes place has remained unknown.

To address the spatiotemporal regulation of RTK dephosphorylation, we investigated the interaction between PTP1B and two RTKs, the epidermal growth factor receptor (EGFR) and the platelet-derived growth factor receptor–β (PDGFR). PTP1B is a widely expressed, prototypical nontransmembrane PTP that can dephosphorylate several RTKs, including the EGFR (1) and the insulin receptor (IR) (2). Indeed, PTP1B-deficient mice are hypersensitive to insulin and show enhanced tyrosyl phosphorylation of the IR in some insulin-responsive tissues (3, 4). Although PTP1B–/– mice show no obvious evidence of increased EGFR or PDGFR signaling, primary and immortalized PTP1B–/– fibroblasts exhibit increased and sustained ligand-induced tyrosyl phosphorylation of the EGFR and PDGFR, indicating that PTP1B may be a biologically relevant EGFR and PDGFR phosphatase (5). However, PTP1B is localized exclusively on the cytoplasmic face of the endoplasmic reticulum (ER), by means of a hydrophobic COOH-terminal anchor sequence (6, 7). These findings raise a conundrum: How does an ER-resident phosphatase dephosphorylate RTKs localized on the plasma membrane or in endocytic vesicles?

The steady-state population of complexes between wild-type PTP1B and RTKs is, on average, very low in cells, because PTP1B has a...