galactic cosmic rays and the turbulent heliospheric tail

Paolo Desiati1,2 & Alexander Lazarian2

1 WIPAC - Wisconsin IceCube Astrophysics Center
2 Department of Astronomy

University of Wisconsin - Madison

Midwest Magnetic Fields Workshop, Madison, WI
April 4th, 2012
cosmic rays spectrum

- spectral structure & mass composition hold information on
 - **origin** of cosmic rays
 - **propagation** from sources to Earth
 - **anisotropy** in arrival distribution
 - energy dependence
 - angular scale
cosmic ray acceleration in supernova remnants

- diffusive shock acceleration in galactic SNR (Baade & Zwicky, 1934 & Fermi, 1949)

\[n_{CR}(E) \approx \frac{E^{-\gamma} R_{SN}}{2\pi R_d^2} \cdot \frac{H}{D(E)} \]

density of cosmic rays

\[D(E) \propto E^\delta \]
diffusion coefficient

\[\phi_{CR} = \frac{c n_{CR}(E)}{4\pi} \]
cosmic ray flux

\[\phi_{CR} \approx 2.4 \cdot \left(\frac{E_{SN}}{10^{51} \text{erg}} \right) \cdot \epsilon_{CR} \]
energy emitted by one SN

\[\cdot \left(\frac{15 \text{kpc}}{R_d} \right)^2 \]
cosmic ray acceleration efficiency

\[\cdot \left(\frac{R_{SN}}{30 \text{yr}} \right) \]
radius of galactic disk

\[\cdot (\gamma - 2) \cdot 3^{-\delta} \]
rate of supernovae in the Galaxy

\[\cdot (\frac{E}{1 \text{TeV}})^{-\gamma - \delta} [\text{TeV}^{-1} m^{-2} s^{-1} \text{sr}^{-1}] \]
propagation term

\[X\text{-ray (Chandra)} \]

\[\text{optical radio} \]

SN1006

W. Baade & F. Zwicky, Physical Review 46, 76, 1934

Remarks on Super-Novae and Cosmic Rays

We have recently called attention to a remarkable type of giant novae. As the subject of super-novae is probably very unfamiliar we give here a few more details which are not contained in our original articles.

1. Distribution of super-novae

In our calculations we made use of the assumption that on the average one super-novae appears in every galaxy every thousand years. This estimate is based on the occurrence of super-novae in the following galaxies,

- Our own galaxy in 1572
- Andromeda in 1885
- Messier 101 in 1907

These three systems are located within a sphere of radius

\[2 \times 10^5 \text{ light years} \]

We wish to emphasize that all of these finds are chance finds since a systematic search for super-novae has been organized only recently.

From the estimate of one super-novae per galaxy per thousand years it follows that 10^4 super-novae appear per year in the 10^5 nebulae which are contained in a sphere of 2 \times 10^5 light years radius (critical distance derived from the red shift of nebulae). If cosmic rays come from super-novae their intensity in points far away from any individual super-novae will be essentially independent of time.

The lifetime of stars is supposed to be of the order of at least 10^9 years. A nebula contains about 10^5 stars. These estimates, combined with the frequency of occurrence of super-novae...
cosmic rays observations
all-particle spectrum

Pamela
Adriani et al. (2011)

He \approx E^{-2.48}
He (\times 0.1) \approx E^{-2.71}

\begin{align*}
p &\approx E^{-2.80} \\
p &\approx E^{-2.67} \\
He &\approx E^{-2.58} \\
p &\approx E^{-2.66}
\end{align*}

CREAM
Ahn et al. (2010)
cosmic rays observations
all-particle spectrum

Pamela
Adriani et al. (2011)

He (×0.1) \approx E^{-2.71}

p \approx E^{-2.67}

p \approx E^{-2.80}

He \approx E^{-2.48}

≈ E^{-3.0}

≈ E^{-3.1}

KASCADE-Grande
Artega-Velázquez et al. (2010)

Gaisser & Stanev
PDG

Friday, April 6, 2012
cosmic rays observations
anisotropy

Nagashima et al. (1998)
Hall et al. (1999)

Tibet ASY
Amenomori et al. (2006)

Super Kamiokande
Guillian et al. (2007)

ARGO-YBJ
Zhang et al. (2009)

Milagro
Abdo et al. (2009)

IceCube
Abbasi et al. (2010)
cosmic rays observations
anisotropy

equatorial coordinates relative intensity

Tibet-ASγ 5 TeV

IceCube-59 20 TeV

Amenomori et al. (2011)

Abbasi et al. (2012)
anisotropy vs. energy

- CR anisotropy changes phase ~100 TeV
- global amplitude is modulated

\[\delta_{\text{fluctuations}} = \frac{3}{2^{3/2}} \frac{1}{\pi^{1/2}} \frac{D(E)}{Hc} \]

\[D(E) \propto E^\delta \]
anisotropy vs. angular scale

- Large vs. small scale anisotropy
- Averaged modulation over a given angular range
- Low angular gradient
- High angular gradient
- Acceptance-corrected

Friday, April 6, 2012
cosmic rays observations
anisotropy

equatorial coordinates statistical significance

Milagro + IceCube TeV Cosmic Ray Data (10° Smoothing)

2 hr = 30°
360°
0°
4 hr = 60°

Milagro
Abdo et al. (2008)
1 TeV

IceCube
Abbasi et al. (2011)
20 TeV

significance [σ]
origin of small scale anisotropy?

astrophysics

- CR from Geminga: ~90-200 pc, 340,000 yr ago
- magnetic connection & propagation in turbulent LIMF

anisotropic MHD turbulence in the ISM

- particles streaming along magnetic field lines over ~100 pc (from a source) interact with $O(1\text{pc})$ ISM turbulence
- pitch angle scattering peaked near the direction of LIMF

Salvati & Sacco, arXiv:0802.2181
origin of small scale anisotropy?
effect of turbulence

- diffusion regime breaks down **within mean free path**

- interaction with **turbulent** interstellar magnetic field

- assuming an underlying dipole anisotropy, fractional localized regions form the effect of magnetic field turbulence

- the residual maps provide an image of magnetic field turbulence < 10's pc

- cosmic ray energy spectra might also be affected by this propagation effects

Giacinti & Sigl, arXiv:1111.2536
diffusive propagation models ...

• ... assume uniform diffusion coefficient across the Galaxy

• ... do not account for energy-dependent interaction with ISM turbulence

• ... do not account for magnetic field geometry

• ... cannot explain non-dipolar anisotropy structures

• ... break down within mean free path
from the Galaxy to our local interstellar medium

Milky Way

< 30,000 pc >

Local Bubble

< 500 pc >

Local Interstellar Cloud

< 10-50 pc >

Heliosphere

< 0.001 - 0.05 pc >
the heliosphere and the LIMF

\[R_g \sim \frac{10^{-3}}{Z} \left(\frac{E}{1 \text{TeV}} \right) \left(\frac{\mu G}{B} \right) \text{pc} \]

\[V_{\text{interstellar flow}} \sim 26 \text{ km/s} \approx V_{\text{Alfén}} \]

Pogorelov & Zank (2004)

Friday, April 6, 2012
the heliosphere magnetic structure

3D simulations of heliosphere
Opher et al., arXiv:1103.2236

3D simulation of heliosphere/heliotail

~0.1-1 AU ~200 AU

~150 AU ~1,000’s AU
the heliosphere turbulence

- the wake downstream the interstellar flow develops turbulence from plasma velocity difference across the heliopause (similar to Kelvin-Helmholtz instability)

- charge-exchange processes decelerate the solar wind near the heliopause, producing an effective drag force that pushes the higher ISM density into the heliosheath. This generates Rayleigh-Taylor instability oscillations with amplitude 10's AU over 100's years - Liewer et al. (1996).

- charge-exchange processes in plasma-neutral fluid model produces alternate growing and damping of Alfvénic, fast and slow turbulence modes, with amplitude 10-100 AU and slowly propagating downstream along the heliopause - Shaikh & Zank (2010).

- The 10-100 AU turbulent ripples propagate outward the ISM and are damped by ion-neutral collisions in mfp ~ 300 AU - Spangler et al. (2011).
scattering on heliospheric turbulence
scattering on heliospheric turbulence
scattering on heliospheric turbulence

• cosmic rays > 100 TeV do not feel the influence of the heliosphere

• cosmic rays < 100 TeV are influenced by the heliosphere from the downstream region

• resonant scattering of 1-10 TeV cosmic rays with 100's AU turbulence ripples re-organizes the arrival direction distribution

• cosmic rays streaming along the LIMF experience the largest effect from the downstream region, and a minimal effect upstream

• perpendicular scattering is critical and determines the gradient region in cosmic ray arrival direction distribution

 ‣ evaluations and calculations to verify this scenario
scattering on heliospheric turbulence

LIMF direction compatible with
- Ca II absorption & H I lines, Frisch (1996)
- radio emission from inner heliosheath, Lallement et al. (2005), Opher et al. (2007)
- polarization measurements, Frisch (2010)
scattering on heliospheric turbulence

LIMF direction compatible with
- Ca II absorption & H I lines, Frisch (1996)
- radio emission from inner heliosheath, Lallement et al. (2005), Opher et al. (2007)
- polarization measurements, Frisch (2010)
spectral feature associated to anisotropy

Milagro & ARGO-YBJ

harder than average spectrum from region A

\[\gamma < 2.7 \text{ at } 4.6 \sigma \text{ level} \]

\[E_c = 3 - 25 \text{ TeV} \]

similar to hardening of “diffuse” cosmic rays by Pamela, CREAM, ATIC-2

\[\frac{dN}{dE} \propto E^{\gamma} e^{-E/E_c} \]

harder spectrum in region A
origin of spectral hardening?

- magnetic polarity reversals due to the 11-year solar cycles compressed by the solar wind in the magneto-tail

- turbulence makes reconnection fast and not affected by ohmic dissipation

- magnetic mirror @ single reconnection as site of acceleration (test particle)

Sweet (1959) Parker (1957)

The origin of spectral hardening?

- Magnetic polarity reversals due to the 11-year solar cycles compressed by the solar wind in the magneto-tail.

- Turbulence makes reconnection fast and not affected by ohmic dissipation.

- Magnetic mirror @ single reconnection as site of acceleration (test particle).

\[N(E)dE \sim E^{-5/2}dE \]

\[E_{\text{max}} \approx 0.5 \left(\frac{B}{1 \mu G} \right) \left(\frac{L_{\text{zone}}}{100 \text{ AU}} \right) \text{TeV} \sim 0.5 - 6 \text{ TeV} \]
Conclusions

• < 100 TeV cosmic ray anisotropy generated by interaction with the very local interstellar medium

• scattering with turbulence inside and in the outer heliospheric boundary to play an important role to explain large scale and small scale TeV cosmic ray anisotropy

• might explain change of cosmic ray anisotropy between 20 TeV and 400 TeV

• spectral hardening observed by Milagro & ARGO-YBJ from the downstream direction from re-acceleration of a fraction of cosmic rays in stochastic magnetic reconnection within the heliotail

• similar hardening observed by Pamela and CREAM could be related to the heliotail, although astrophysical explanations @ source and from propagation are possible