The nearby, tidally disturbed Magellanic Cloud galaxies have lost a tremendous amount of gas, which now lies in tidal streams that span over 200° across the sky. These gaseous streams are falling onto the Milky Way and could provide a substantial amount of material for producing stars if it can survive the journey to the Galactic disk. Interactions with the Galactic halo and the surrounding Lyman continuum can cause this gas to evaporate in transit by heating and ionizing it.

In this study, we constrain the distance of the Magellanic Stream at 100° from the Magellanic Clouds to be $d \approx 50$ kpc from the Sun when comparing the amount of Hα emission that would be produced at different positions by the ionizing radiation field emanating from the surrounding galaxies. This places a lower mass limit of $M_{\odot} \times 10^{10}$ M\odot for the total gas contained in all of the Magellanic tidal debris (Fox et al. 2014).

This Hα emission extends more than 2° off the H I emission. We find that the ionization fraction of the Stream increases as $N_{\text{H\alpha}}$ decreases. Regions with $log \ N_{\text{H\alpha}}/cm^{-2} = 19.5 - 20.0$ are 15–65% ionized, based on comparisons of the [O I] and Hα emission. These ionization fractions closely agree with those found in the Fox et al. 2014 absorption-line study, implying very little ionization changes on $< 1^\circ$ scale.

The sight lines positioned off or on the edge of the Magellanic Stream tend to have higher Hα intensities than those that aligning with high H I column density gas. The spectral profiles at these positions are often offset from the H I gas emission by as much as 30 km s$^{-1}$. We conclude that these low H I column density sight lines are less shielded from the surrounding coronal gas and ionizing radiation field and are likely evaporating into the Galactic halo.

The Hα intensity for sight lines on and off (Top) and only on the HI filament of the Magellanic Stream. The right-hand y-axis marks the amount of ionizing photons needed to reproduce observed Hα emission. The colored solid lines trace the predicted ionizing flux from the MW (Fox et al. 2005), MCs (Barger et al. 2013), and EGB (Haardt & Madau 2001) at different distances that are anchored at the Magellanic Clouds to 50–200 kpc at an angular distance of 100° from these galaxies. Some of the observations below the South Galactic Pole are too bright for these photoionization sources alone; energetic processes associated with the Galactic center might also influence them (Bland–Hawthorn 2013).

The Location of pointed Wisconsin Hα Mapper telescope observations along the Magellanic Stream. The background H I column density gas map is comprised of Gaussian decompositions fits to the Leiden–Argentina–Bonn (LAB) all-sky survey that has been adapted from Nidever et al. (2008).

The ISM of the Magellanic Stream, Science Foundation supported WHAM through grants AST–0204973, AST–0607512, AST–1108911 and AST–1203059. Barger received additional supported through NSF Astronomy and Astrophysical Postdoctoral Fellowship award AST–1203059.

The Ionization Source of and Distance to the Magellanic Stream

Kat Barger1,2, Greg Madsen3, Andrew Fox4, Bart Wakker5, Joss Bland–Hawthorn6, David Nidever7, L. Matt Haffner8, Nicolas Lehner2, and Alex S. Hill8

1Texas Christian University, 2University of Notre Dame, 3University of Cambridge, 4Space Telescope Science Center, 5University of Wisconsin–Madison, 6University of Sydney, 7University of Michigan, 8Haverford College

The nearby, tidally disturbed Magellanic Cloud galaxies have lost a tremendous amount of gas, which now lies in tidal streams that span over 200° across the sky. These gaseous streams are falling onto the Milky Way and could provide a substantial amount of material for producing stars if it can survive the journey to the Galactic disk. Interactions with the Galactic halo and the surrounding Lyman continuum can cause this gas to evaporate in transit by heating and ionizing it.

In this study, we constrain the distance of the Magellanic Stream at 100° from the Magellanic Clouds to be $d \approx 50$ kpc from the Sun when comparing the amount of Hα emission that would be produced at different positions by the ionizing radiation field emanating from the surrounding galaxies. This places a lower mass limit of $M_{\odot} \times 10^{10}$ M\odot for the total gas contained in all of the Magellanic tidal debris (Fox et al. 2014).

This Hα emission extends more than 2° off the H I emission. We find that the ionization fraction of the Stream increases as $N_{\text{H\alpha}}$ decreases. Regions with $log \ N_{\text{H\alpha}}/cm^{-2} = 19.5 - 20.0$ are 15–65% ionized, based on comparisons of the [O I] and Hα emission. These ionization fractions closely agree with those found in the Fox et al. 2014 absorption-line study, implying very little ionization changes on $< 1^\circ$ scale.