AGN Activity and the Misaligned Hot ISM in the Compact Radio Elliptical NGC 4278

Type Journal Article
Names Silvia Pellegrini, Junfeng Wang, Giuseppina Fabbiano, Dong-Woo Kim, Nicola J. Brassington, John S. Gallagher, Ginevra Trinchieri, Andreas Zezas
Publication The Astrophysical Journal
Volume 758
Pages 94
Journal Abbreviation The Astrophysical Journal
Date October 1, 2012
DOI 10.1088/0004-637X/758/2/94;
URL http://adsabs.harvard.edu/abs/2012ApJ...758...94P
Library Catalog NASA ADS
Abstract The analysis of a deep (579 ks) Chandra ACIS pointing of the elliptical galaxy NGC 4278, which hosts a low-luminosity active galactic nucleus (AGN) and compact radio emission, allowed us to detect extended emission from hot gas out to a radius of ~5 kpc, with 0.5-8 keV luminosity of 2.4 × 1039 erg s–1. The emission is elongated in the NE-SW direction, misaligned with respect to the stellar body, and aligned with the ionized gas and with the Spitzer IRAC 8 μm non-stellar emission. The nuclear X-ray luminosity decreased by a factor of ~18 since the first Chandra observation in 2005, a dimming that enabled the detection of hot gas even at the position of the nucleus. The gas shows a significantly larger temperature (kT = 0.75 keV) in both the projected and deprojected profiles in the inner ~300 pc than in the surrounding region, where it stays at ~0.3 keV, a value lower than expected from standard gas heating assumptions. The nuclear X-ray emission is consistent with that of a low radiative efficiency accretion flow, accreting mass at a rate close to the Bondi rate; estimates of the power of the nuclear jets require that the accretion rate is not largely reduced with respect to the Bondi rate. Among possible origins for the central large hot gas temperature, such as gravitational heating from the central massive black hole and a recent AGN outburst, interaction with the nuclear jets seems more likely, especially if the latter remain confined, and heat the nuclear region frequently. The unusual hot gas distribution on the galactic scale could be due to the accreting cold gas triggering the cooling of the hot phase, a process also contributing to the observed line emission from ionized gas, and to the hot gas temperature being lower than expected; alternatively, the latter could be due to the efficiency of the Type Ia supernova heating that is lower than usually adopted.
Tags CD, GALAXIES: ELLIPTICAL AND LENTICULAR, X-Rays: ISM, X-rays: galaxies, galaxies: active, galaxies: individual: NGC 4278, galaxies: nuclei
UW-Madison Astronomy Home