The Baryon Oscillation Spectroscopic Survey of SDSS-III

Type Journal Article
Names Kyle S. Dawson, David J. Schlegel, Christopher P. Ahn, Scott F. Anderson, Éric Aubourg, Stephen Bailey, Robert H. Barkhouser, Julian E. Bautista, Alessandra Beifiori, Andreas A. Berlind, Vaishali Bhardwaj, Dmitry Bizyaev, Cullen H. Blake, Michael R.
Publication The Astronomical Journal
Volume 145
Pages 10
Journal Abbreviation The Astronomical Journal
Date January 1, 2013
DOI 10.1088/0004-6256/145/1/10;
ISSN 0004-6256
URL http://adsabs.org/2013AJ.145.10D
Library Catalog labs.adsabs.harvard.edu
Abstract The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg2 to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Lyα forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyα forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance dA to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyα forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate DA (z) and H -1(z) parameters to an accuracy of 1.9% at z ~ 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.
Tags cosmology: observations, surveys
UW-Madison Astronomy Home