Swimming against the current: simulations of central AGN evolution in dynamic galaxy clusters

Type Journal Article
Names Brian J. Morsony, Sebastian Heinz, Marcus BrĂ¼ggen, Mateusz Ruszkowski
Publication Monthly Notices of the Royal Astronomical Society
Volume 407
Issue 2
Pages 1277-1289
Date September 1, 2010
Short Title Swimming against the current
URL http://adsabs.harvard.edu/abs/2010MNRAS.407.1277M
Library Catalog NASA ADS
Abstract We present a series of three-dimensional hydrodynamical simulations of central active galactic nuclei (AGN)-driven jets in a dynamic, cosmologically evolved galaxy cluster. Extending previous work, we study jet powers ranging from Ljet = 1044ergs-1 to Ljet = 1046ergs-1 and in duration from 30 to 200 Myr. We find that large-scale motions of cluster gas disrupt the AGN jets, causing energy to be distributed throughout the centre of the cluster, rather than confined to a narrow angle around the jet axis. Disruption of the jet also leads to the appearance of multiple disconnected X-ray bubbles from a long-duration AGN with a constant luminosity. This implies that observations of multiple bubbles in a cluster are not necessarily an expression of the AGN duty cycle. We find that the `sphere of influence' of the AGN, the radial scale within which the cluster is strongly affected by the jet, scales as R ~ L1/3jet. Increasing the duration of AGN activity does not increase the radius affected by the AGN significantly, but does change the magnitude of the AGN's effects. How an AGN delivers energy to a cluster will determine where that energy is deposited: a high luminosity is needed to heat material outside the core of the cluster, while a low-luminosity, long-duration AGN is more efficient at heating the inner few tens of kpc.
Tags GALAXIES: CLUSTERS: GENERAL, galaxies: active, galaxies: jets, intergalactic medium
UW-Madison Astronomy Home