The Faintest X-Ray Sources from z = 0 TO 8

Type Journal Article
Names L. L. Cowie, A. J. Barger, G. Hasinger
Publication The Astrophysical Journal
Volume 748
Issue 1
Pages 50
Date March 1, 2012
URL http://adsabs.harvard.edu/abs/2012ApJ...748...50C
Library Catalog NASA ADS
Abstract We use the new 4 Ms exposure of the Chandra Deep Field-South (CDF-S) field obtained with the Chandra X-ray satellite to investigate the properties of the faintest X-ray sources over a wide range of redshifts. We use an optimized averaging procedure to investigate the weighted mean X-ray fluxes of optically selected sources in the CDF-S over the redshift range z = 0-8 and down to 0.5-2 keV fluxes as low as 5 × 10-19 erg cm-2 s-1. None of the samples of sources at high redshifts (z > 5) show any significant flux, and at z = 6.5 we place an upper limit on the X-ray luminosity of 4 × 1041 erg s-1 in the rest-frame 3.75-15 keV band for the sample of Bouwens et al. This is consistent with any X-ray production in the galaxies being solely due to star formation. At lower redshifts, we find significant weighted mean X-ray fluxes in many samples of sources over the redshift range z = 0-4. We use these to argue that (1) the relation between star formation and X-ray production remains invariant over this redshift range, (2) X-ray sources below the direct detection threshold in the CDF-S are primarily star forming, and (3) there is full consistency between UV and X-ray estimations of the star formation history. Based in part on data obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
Tags GALAXIES: EVOLUTION, cosmology: observations, galaxies: active, galaxies: distances and redshifts, galaxies: starburst
UW-Madison Astronomy Home