The COS/UVES Absorption Survey of the Magellanic Stream. II. Evidence for a Complex Enrichment History of the Stream from the Fairall 9 Sightline

Type Journal Article
Names Philipp Richter, Andrew J. Fox, Bart P. Wakker, Nicolas Lehner, J. Christopher Howk, Joss Bland-Hawthorn, Nadya Ben Bekhti, Cora Fechner
Publication The Astrophysical Journal
Volume 772
Pages 111
Journal Abbreviation The Astrophysical Journal
Date August 1, 2013
DOI 10.1088/0004-637X/772/2/111;
ISSN 0004-637X
URL http://adsabs.org/2013ApJ.772.111R
Library Catalog labs.adsabs.harvard.edu
Abstract We present a multi-wavelength study of the Magellanic Stream (MS), a massive gaseous structure in the Local Group that is believed to represent material stripped from the Magellanic Clouds. We use ultraviolet, optical and radio data obtained with HST/COS, VLT/UVES, FUSE, GASS, and ATCA to study metal abundances and physical conditions in the Stream toward the quasar Fairall 9. Line absorption in the MS from a large number of metal ions and from molecular hydrogen is detected in up to seven absorption components, indicating the presence of multi-phase gas. From the analysis of unsaturated S II absorption, in combination with a detailed photoionization model, we obtain a surprisingly high α abundance in the Stream toward Fairall 9 of [S/H] = -0.30 ± 0.04 (0.50 solar). This value is five times higher than what is found along other MS sightlines based on similar COS/UVES data sets. In contrast, the measured nitrogen abundance is found to be substantially lower ([N/H] = -1.15 ± 0.06), implying a very low [N/α] ratio of -0.85 dex. The substantial differences in the chemical composition of MS toward Fairall 9 compared to other sightlines point toward a complex enrichment history of the Stream. We favor a scenario, in which the gas toward Fairall 9 was locally enriched with α elements by massive stars and then was separated from the Magellanic Clouds before the delayed nitrogen enrichment from intermediate-mass stars could set in. Our results support (but do not require) the idea that there is a metal-enriched filament in the Stream toward Fairall 9 that originates in the LMC. Based on observations obtained with the NASA/ESA Hubble Space Telescope, which is operated by the Space Telescope Science Institute (STScI) for the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5D26555, and on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile under Program ID 085.C-0172(A).
Tags Galaxy: evolution, Galaxy: halo, ISM: ABUNDANCES, MAGELLANIC CLOUDS, quasars: absorption lines
UW-Madison Astronomy Home