Ongoing Search for Metal Line Emission in Intermediate and High Velocity Clouds with WHAM

Type Conference Paper
Names K. A. Barger, L. M. Haffner, G. J. Madsen, A. S. Hill, B. P. Wakker
Proceedings Title Bulletin of the American Astronomical Society
Conference Name American Astronomical Society, AAS Meeting #215, #415.29
Volume 42
Pages 265
Date January 1, 2010
URL http://adsabs.harvard.edu/abs/2010AAS...21541529B
Library Catalog NASA ADS
Abstract We present new observations of the ionized gas in Complexes A, K, and L obtained with the Wisconsin H-Alpha Mapper (WHAM). To date, there have been only a limited number of studies of the ionized components of intermediate and high velocity clouds. Investigating their emission provides a rare probe of the physical conditions of the clouds and the halo they are embedded within. These types of measurements will help guide discussion of the origin and evolution of these neutral halo structures. Here we follow up on the H-alpha maps we have presented elsewhere with deeper observations in H-alpha, [S II], [N II], and [O I]. Distance constraints from absorption studies place this gas in the mid to lower Galactic halo. Complex A has been constrained to a distance of 8-10 kpc (Wakker et al. 2008); Complex K has an upper limit of 6.8 kpc; and Complex L at a distance of 8-15 kpc (Wakker 2000). Some halo gas structures have clear metal line emission (e.g., Smith Cloud; Hill et al. 2009 and this meeting); however, the lack of [S II] emission toward Complex C combined with absorption-line observations demonstrates that it has very low metallically (Wakker, et al. 1999). Such discoveries reveal ongoing gas replenishment of the evolving Milky Way. Here, we find a similar lack of emission toward the high-velocity Complex A. In particular, the cores of its cloud components designated III and IV show no evidence for metal line emission in our new observations, which places new constraints on the metallically of this complex. These observations were taken with WHAM at Kitt Peak, and we thank the excellent, decade-long support from its staff. WHAM operations are supported through NSF award AST-0607512.
UW-Madison Astronomy Home