ALMA Observations of the Galactic Center: SiO Outflows and High-mass Star Formation near Sgr A*

Type Journal Article
Names F. Yusef-Zadeh, M. Royster, M. Wardle, R. Arendt, H. Bushouse, D. C. Lis, M. W. Pound, D. A. Roberts, B. Whitney, A. Wootten
Publication The Astrophysical Journal Letters
Volume 767
Pages L32
Journal Abbreviation The Astrophysical Journal Letters
Date April 1, 2013
DOI 10.1088/2041-8205/767/2/L32;
ISSN 0004-637X
Short Title ALMA Observations of the Galactic Center
Library Catalog
Abstract ALMA observations of the Galactic center with a spatial resolution of 2.''61 × 0.''97 resulted in the detection of 11 SiO (5-4) clumps of molecular gas within 0.6 pc (15'') of Sgr A*, interior to the 2 pc circumnuclear molecular ring. The three SiO (5-4) clumps closest to Sgr A* show the largest central velocities, ~150 km s-1, and the broadest asymmetric line widths with full width zero intensity (FWZI) ~110-147 km s-1. The remaining clumps, distributed mainly to the NE of the ionized mini-spiral, have narrow FWZI (~18-56 km s-1). Using CARMA SiO (2-1) data, Large Velocity Gradient modeling of the SiO line ratios for the broad velocity clumps constrains the column density N(SiO) ~1014 cm-2, and the H2 gas density n_H_2=(3{--}9)\times 10^5 cm-3 for an assumed kinetic temperature 100-200 K. The SiO clumps are interpreted as highly embedded protostellar outflows, signifying an early stage of massive star formation near Sgr A* in the last 104-105 yr. Support for this interpretation is provided by the SiO (5-4) line luminosities and velocity widths which lie in the range measured for protostellar outflows in star-forming regions in the Galaxy. Furthermore, spectral energy distribution modeling of stellar sources shows two young stellar object candidates near SiO clumps, supporting in situ star formation near Sgr A*. We discuss the nature of star formation where the gravitational potential of the black hole dominates. In particular, we suggest that external radiative pressure exerted on self-shielded molecular clouds enhances the gas density, before the gas cloud becomes gravitationally unstable near Sgr A*. Alternatively, collisions between clumps in the ring may trigger gravitational collapse.
Tags Galaxy: Center, ISM: MOLECULES, ISM: jets and outflows, stars: protostars
UW-Madison Astronomy Home