Planetary Migration

- Normally – migrate inward; dynamical friction/drag on planet moving through disk
- See eqn 6.11 in your book
- $T \text{ (years)} = 10^5 \left(\frac{M_p}{M_\oplus} \right)^{-1} \left(\frac{M_*}{M_\odot} \right)^{-1/2} \left(\frac{a}{a_\oplus} \right)^{-1/2} \left(\frac{H}{H_\oplus} \right)^2 100$
 - Earth masses, g cm$^{-2}$,AU

→ Accounts for short period planets
Neptune Migration

- Neptune migrates from ~20AU to 30 AU
- Outer disk objects captured into resonances with Neptune during migration
- Objects in disk scattered by Neptune \rightarrow “scattered disk” of KBOs
“Nice” Model
Tsiganis et al. 2005, Gomes et al. 2005

- 4 giant planets between 5 AU – 14 AU
- Disk of planetesimals extends to 35 AU with total mass of 35 M_E
- Inner planetesimals \rightarrow planet scattering orbits, planets migrate \rightarrow J, S cross 1:2 resonances \rightarrow excites eccentricities of planetesimals \rightarrow drives up eccentricities of U, N \rightarrow migrate outward disrupt outer disk \rightarrow late heavy bombardment of terrestrial planets
Neptune migration

Neptune scatters planetesimals \rightarrow increase in eccentricity \rightarrow end up under the influence of J, S \rightarrow scattered out of solar system \rightarrow net effect is that N scatters material inward and migrates outward.

Fernandez & Ip 1986

Tsiganis et al. 2005

Multiple Planets (Wright 2009)
Udry et al. 2003 – limits of migration

- Lack of $M_p > 2M_j$ w/ $P < 100$ days
- Runaway migration?
- Large pl. form far out?
- Star/planet interaction?

Spiegel et al. 2009