Planetary Rings

- A Little History
 - 1610 \(\rightarrow \) Galileo discovered rings; they disappeared in 1612
 - 1659 \(\rightarrow \) Christian Huygens discovered disk-like nature
 - 1977 \(\rightarrow \) Uranus’ rings discovered during occultation
 - 1979 \(\rightarrow \) Voyager 1 discovered Jupiter’s rings
 - 1980s \(\rightarrow \) Neptune’s arc-like rings discovered via occultation
Cassini-Huygens Science - Rings

- Study configuration of the rings and dynamic processes responsible for ring structure
- Map the composition and size distribution of ring material
- Investigate the interrelation of Saturn’s rings and moons, including imbedded moons
- Determine the distribution of dust and meteoroid distribution in the vicinity of the rings
- Study the interactions between the rings and Saturn’s magnetosphere, ionosphere, and atmosphere

Basic Properties

- Solid disk vs particles
 - Too big to rotate as solid body
 - Maxwell \rightarrow rings are particles
- 100m thick vs 10^5 km wide (Saturn)
- Just one ring? No
- All reside within Roche limit of planet
Ring Comparison

- **Jupiter**
 - Main ring – bigger particles, more scattering
 - Halo – interior component, orbits scattered by interaction with Jupiter's magnetic field
 - Gossamer – very low density, farther out → more inclined orbit so its fatter

- **Uranus**
 - 6 identified rings
 - Thickness ~10 km, width ~250000 km
 - Very close to being in circular orbit
Rings: Uranus & Neptune

Uranus' rings

Neptune rings
Particle Size Distribution

- Power law $n(r) = n_0 r^{-3} \rightarrow$ number of 10 m particles is 10^{-9} times less than # of 1 cm particles
- Total mass distribution is uniform across all bins
- Collisions
 - Net loss of energy \rightarrow flatten ring
 - Fracture particles \rightarrow power law distribution of particle size
 - But, ring should actually be thinner and radially distribution should gradually taper off, not have sharp edges
Measuring Composition

- Water ice plus impurities
- Color variation = variation in abundance of impurities
- What could they be?
Ring Composition

Red slope arises from complex carbon compounds

Variation in grain size included in model → 90% water ice overall

Comparative Spectroscopy

olivine

Ring particle
Ring Dynamics

- Rings are all inside Roche Zone
 - $a_s/R_p = 1.44(\rho_s/\rho_p)$
 - Something with $D < 100$ km is ok
- Inner particles overtake outer particles \Rightarrow gravitational interaction

Ring Dynamics

- Inner particles overtake outer particles \Rightarrow gravitational interaction
 - Inner particle loses energy, moves closer to planet
 - Outer particle gains energy, moves farther from planet
 - Net effect is spreading of the ring

- Spreading timescale = diffusion timescale
Ring Dynamics

- Spreading stops when there are no more collisions
- Ignores radiation/magnetic effects that are linearly proportional to the size
- Exact distribution affected by
 - Differential rotation
 - Presence of moons and resonances with those moons

Saturn’s Rings

- D ring: 66900-74510
- C ring: 74568-92000
 - Titan ringlet 77871
 - Maxwell Gap: 87491
- B ring: 92000-117580
- Cassini division
- A ring: 122170-136775
- F ring: 140180 (center)
- G ring: 170000-175000
- E ring: 181000-483000
Structure in the Rings

- Let's look at some pictures and see what there is to see....
- Gaps
- Ripples
- Abrupt edges to the rings
- Presence of small moons
Moons and Rings

- Perturb orbits of ring particles
 - Confine Uranus’ rings, create arcs around Neptune
- Shepherding – two moons on either side of ring
 - Outer one has lower velocity \rightarrow slows ring particle, particle loses energy
 - Inner one has higher velocity \rightarrow accelerates ring particle, particle gains energy
- Saturn’s F ring is confined between Prometheus and Pandora

Shepherds in Uranus’ ring system
Moons and Rings

- Perturb orbits of ring particles
 - Confine Uranus’ rings, create arcs around Neptune
- Shepherding – two moons on either side of ring
 - Outer one has lower velocity → slows ring particle, particle loses energy
 - Inner one has higher velocity → accelerates ring particle, particle gains energy
 - Saturn’s F ring is confined between Prometheus and Pandora
- Resonances
 - Similar to Kirkwood Gap in asteroid belt → 2:1 resonance with Mimas

Resonances

- ALMOST ALL STRUCTURE IN RINGS IS PROBABLY DUE TO DYNAMICAL INTERACTIONS WITH MOONS

- Orbits of the ring particles have:
 - Orbital frequency
 - Radial frequency
 - Vertical frequency
- Pattern speed of the perturbing potential vs. orbital frequency of the particles → when they match we get corotation
- Pattern speed vs radial frequency → Lindblad resonances
“Perturbing Potential”?

- **Gravitational potential**
 - Orbit about main planet \rightarrow ring particles are in orbit
 - Potential due to moon that varies with same period as that of the moon \rightarrow rotating reference frame

- **Net effect \rightarrow spiral density wave**
 - Exists between inner and outer Lindblad resonances
 - Fluctuations in potential \rightarrow fluctuations in the surface density \rightarrow azimuthal variation, tightly wound, shows up looking like an old-fashioned LP
Vertical resonances – vertical structure

Moonlets?
Pan – density waves

Origin of Saturn’s Main Ring System

- Impact generated debris from current moons – works for Saturn’s “e” ring, but not generally
- A satellite originally in the Roche Zone was destroyed by a passing comet
 - When? How large?
 - There are big chunks (50m-100m size) in the rings (Tiscareno et al. 2006, 2008)
- A massive comet was tidally disrupted during a close encounter with Saturn
 - Shouldn’t all giant planets have prominent rings?
- The rings are the remnants of Saturn’s disk
 - Composition of the rings is “more pure” than composition of Saturn’s moons (few silicates)
Origin of Saturn’s Main Ring
(Charnoz et al. 2009 Icarus 199 413)

- Destruction of large satellite during late heavy bombardment
 - LHB \rightarrow resulting from migration of giant planets during formation \rightarrow how many planetesimals need to be scattered?
 - Formation and destruction of moons around giant planets until local debris disk is cleared
 - Survival of satellite within the Roche Zone \rightarrow depends on strength of material out of which satellite is made; can be done
- Question for you: how do you go about estimating the likelihood of this taking place?

Enceladus
Enceladus occultation

Enceladus