S–Z Effect

- CMB photons scatter off hot electrons in ICM
- Statistical net gain of energy → CMB spectrum shifted to slightly higher energies → decrement in intensity at Rayleigh–Jean (\(h\nu \ll kT \))

- Amount of decrement → integral of pressure (NT) along line of sight
CMB $\rightarrow 2.728 \pm 0.02$ K

- 0.03% deviations

- Very smooth, but....

- ...there are distortions
Fluctuations on different scales → Angular scale corresponds to spatial scale today → Power spectrum of fluctuations → acoustic peaks in CMB

TABLE 1

Power-Law ΛCDM Model Parameters: WMAP Data Only

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean (68% Confidence Range)</th>
<th>Maximum Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baryon density, Ω₀h²</td>
<td>0.024 ± 0.001</td>
<td>0.023</td>
</tr>
<tr>
<td>Matter density, Ωₙ₀h²</td>
<td>0.14 ± 0.02</td>
<td>0.13</td>
</tr>
<tr>
<td>Hubble constant, h</td>
<td>0.72 ± 0.05</td>
<td>0.68</td>
</tr>
<tr>
<td>Amplitude, A</td>
<td>0.9 ± 0.1</td>
<td>0.78</td>
</tr>
<tr>
<td>Optical depth, τ</td>
<td>0.166 ± 0.076</td>
<td>0.10</td>
</tr>
<tr>
<td>Spectral index, n_s</td>
<td>0.99 ± 0.04</td>
<td>0.97</td>
</tr>
<tr>
<td>χ²/ν</td>
<td>1431/1342</td>
<td></td>
</tr>
</tbody>
</table>

Note.—Fit to WMAP data only.
Flavors of Structures

- Individual galaxies \rightarrow 0.2–0.5 Mpc
- Galaxy groups \rightarrow 1–2 Mpc
- Clusters of Galaxies \rightarrow 2–4 Mpc
- Superclusters \rightarrow 5–10 Mpc
- Filaments \rightarrow tens of Mpc
200,000 galaxy redshifts \rightarrow 3D map of galaxy distribution traces true baryonic matter distribution

Power spectrum (scales over which galaxies are spatially correlated) reflects matter distribution

Caveats: redshifts reflect deviation from Hubble flow

Variation with morphological type \rightarrow “gastrophysical processes” only act on Mpc-scales

How do we know?

- Redshift surveys (optical): large numbers of galaxies over a large volume
- Wide-field, multi-object spectroscopy to get redshifts
- Emission/absorption line galaxies
Optical Redshift Surveys
Theory → The WHIM
UL-density; LL-dark matter; UR-temp (10^6 K); LR-WHIM

- Shocks convert thermal energy in relativistic electrons
- 10% of low frequency radio background (< 500 MHz)
- Fluctuations on scales of 1' – 1 degree (400 < l < 2000)

Keshet et al. 2004
Optical Redshift Surveys
Large Scale Structure – Filamentary

- How do we know?
 - Redshift surveys (optical): large numbers of galaxies over a large volume

- How big are filaments?
 - Largest length scale is 70–80 Mpc

- What’s going on in the filaments?
 - Galaxy groups line the filaments
 - Giant clusters reside where filaments intersect
Superclusters

The Peculiar Velocity Field and the Great Attractor
- Motions: Earth, Sun, Milky Way, Local Group, Virgo!!!!
 - The observed motion of the Virgo Cluster implies something extremely massive in the direction of the southern Milky Way → The Great Attractor

Observed Superclusters
- There are collections of clusters in the nearby Universe (Perseus–Pisces ridge); usually not spherical (like individual clusters)

Finding the Great Attractor
The Great Attractor

Problem – it's behind the Milky Way in the Zone of Avoidance!!!
Methods of identifying the galaxy distribution behind the Milky Way

- deep optical galaxy searches (using existing sky surveys)
- NIR: 2MASS survey (H,J,K) and DENIS (I,J,K)
- HI surveys
 - unaffected by extinction (ZOA transparent)
 - immediate redshifts/linewidths
 - uniform flux limited sample

BUT:
- no early-type galaxies
 - no galaxies with $-250 \leq v \leq 250$ km/s
 - lower detection rate for $|b| \leq 1.5^\circ$ (HI–ZOA)