Galaxy Clusters

- Contain 10% of all galaxies
- Dark matter dominated (M/L > 100)
- Galaxy evolution different in clusters
- Tracers of growth and evolution of large scale structure
 - “Easily” identified at high z
Galaxy Clusters

- Early work of Abell (1958) → optical plates
- “Richness”
 - # of galaxies brighter than 2 magnitudes fainter than the 3rd brightest member → proportional to total # of galaxies in cluster
 - Compactness → within 1.5 Mpc (average separation between galaxies ~ 5 Mpc)
- \(N(R>1) = 10^{-5} \text{ Mpc}^{-3} \)
- Clusters correlated on scales ~26 Mpc
Basic Properties

- Mass $\sim 10^{15} \, M_\odot$
- Velocity dispersion $\sim 1000 \, \text{km s}^{-1}$
- Radius \sim few Mpc
- Population \sim few 100 galaxies
 - Schecter LF defined from galaxy clusters
Identifying clusters – spectroscopy
Identifying clusters – X-rays
Cluster Types

- **Spiral–rich**
 - E:S0:S → 1:2:3 → similar to field
 - Asymmetric structure

- **Spiral–poor**
 - E:S0:S → 1:2:1

- **Centrally dominant (cD)**
 - 1,2 dominant galaxies (ellipticals)
 - Few spirals (< 20%)
 - Spherical distribution of galaxies
Cluster Evolution

- Butcher–Oemler Effect
 - Moderate z clusters have large populations of blue galaxies
 - More AGN
 - More starbursting galaxies
 - “E+A” galaxies
Cluster Evolution

- Butcher–Oemler Effect
 - Moderate z clusters have large populations of blue galaxies
 - More AGN
 - More starbursting galaxies
 - “E+A” galaxies
 - Higher velocity dispersions
 - Less centrally concentrated
Clusters as Isothermal Spheres

- Hydrostatic equilibrium
 - \(\frac{dp}{dr} = - \frac{GM\rho}{r^2} \)
 - \(M = \int 4\pi r^2 \rho(r) dr \Rightarrow dM = 4\pi r^2 \rho(r) dr \)
 - \(\frac{d}{dr}(r^2/\rho \ dp/dr) + 4\pi Gr^2 \rho = 0 \)

 - Assume:
 - Ideal gas law \(p = \rho k_B T/\mu \) (\(\mu = \text{mean mass} \))
 - \(3/2 \ k_B T = \frac{1}{2} \mu v^2 \)
Isothermal Spheres

- Density profile $\rho(r) = \Sigma A_n r^{-n}$
- Central density $\rho_0 = (9v^2)/(4\pi GR^2 \sqrt{1/2})$

Ideal gas $p = \rho k_B T/\mu m_H$, so...

$$(\rho k_B T/\mu m_H)[(1/\rho)(d\rho/dr)+(1/T)(dT/dr)] = -(GM(<r)\rho)/r^2$$

thus, mass goes as T, ρ and X-ray luminosity depends on density and temperature
Some numbers

- Cluster masses
 - Galaxies $\rightarrow 10^{12} - 10^{14} \, M_\odot$
 - Gas \rightarrow few times $10^{12} -$ few times 10^{14}
 - Gravitational $\rightarrow 10^{13} - 10^{15} \, M_\odot$
 - More mass in gas than stars, dark matter dominated !!!!!
Compton scattering optical depth
- \[y = \int \left(\frac{k_B T}{m_e c^2} \right) \sigma_T N_e dl \]

Decrement in Rayleigh–Jeans region of spectrum
- \[\frac{\Delta I}{I} = -2y \rightarrow \sim 10^{-4} \]

Hot gas from clusters affects microwave background \(\rightarrow \) best measured in radio part of the spectrum \(\rightarrow \) search tool for distant clusters
S–Z Effect

- CMB + hot plasma \rightarrow Compton scattering \rightarrow distortions in the CMB
- Source of hot plasma? Galaxy clusters
- Distortion of the BB spectrum dominated by:
 - $y = \sigma_T \int n_e (kT_e / m_e c^2) dl$
 - σ_T is the Thompson cross section
 - Integral is along line of sight
 - Recall T_e is a function of cluster mass
- Map large scale structure, find clusters, measure cluster masses
- Detection via radio continuum observations
Superclusters

- The Peculiar Velocity Field and the Great Attractor
 - Motions: Earth, Sun, Milky Way, Local Group, Virgo!!!!
 - The observed motion of the Virgo Cluster implies something extremely massive in the direction of the southern Milky Way → The Great Attractor

- Observed Superclusters
 - There are collections of clusters in the nearby Universe (Perseus–Pisces ridge); usually not spherical (like individual clusters)

- Finding the Great Attractor